Советник

Юридические услуги по корпоративному праву

Модули алгебра правило

Содержание:

Модуль числа (абсолютная величина числа), определения, примеры, свойства.

В этой статье мы детально разберем модуль числа. Мы дадим различные определения модуля числа, введем обозначения и приведем графические иллюстрации. При этом рассмотрим различные примеры нахождения модуля числа по определению. После этого мы перечислим и обоснуем основные свойства модуля. В конце статьи поговорим о том, как определяется и находится модуль комплексного числа.

Навигация по странице.

Модуль числа – определение, обозначение и примеры

Сначала введем обозначение модуля числа. Модуль числа a будем записывать как , то есть, слева и справа от числа будем ставить вертикальные черточки, образующие знак модуля. Приведем пару примеров. Например, модуль целого числа −7 можно записать как ; модуль рационального числа 4,125 записывается как , а модуль иррационального числа имеет запись вида .

Так мы определились с обозначением, теперь пришло время дать определение модуля числа. Чтобы хорошо понять определение модуля числа необходимо хорошо владеть материалом статьи положительные и отрицательные числа, а также статьи противоположные числа.

Следующее определение модуля относится к действительным числам, а следовательно, и к натуральным числам, и к целым, и к рациональным, и к иррациональным числам, как к составляющим частям множества действительных чисел. О модуле комплексного числа мы поговорим в последнем пункте этой статьи.

Модуль числа a – это либо само число a , если a – положительное число, либо число −a , противоположное числу a , если a – отрицательное число, либо 0 , если a=0 .

Озвученное определение модуля числа часто записывают в следующем виде , эта запись означает, что , если a>0 , , если a=0 , и , если a

Геометрически модуль числа можно интерпретировать как расстояние. Приведем определение модуля числа через расстояние.

Модуль числа a – это расстояние от начала отсчета на координатной прямой до точки, соответствующей числу a.

Данное определение согласуется с определением модуля числа, данного в первом пункте. Поясним этот момент. Расстояние от начала отсчета до точки, которой соответствует положительное число, равно этому числу. Нулю соответствует начало отсчета, поэтому расстояние от начала отсчета до точки с координатой 0 равно нулю (не нужно откладывать ни одного единичного отрезка и ни одного отрезка, составляющего какую-нибудь долю единичного отрезка, чтобы от точки O попасть в точку с координатой 0 ). Расстояние от начала отсчета до точки с отрицательной координатой равно числу, противоположному координате данной точки, так как равно расстоянию от начала координат до точки, координатой которой является противоположное число.

Например, модуль числа 9 равен 9 , так как расстояние от начала отсчета до точки с координатой 9 равно девяти. Приведем еще пример. Точка с координатой −3,25 находится от точки O на расстоянии 3,25 , поэтому .

Озвученное определение модуля числа является частным случаем определения модуля разности двух чисел.

Модуль разности двух чисел a и b равен расстоянию между точками координатной прямой с координатами a и b .

То есть, если даны точки на координатной прямой A(a) и B(b) , то расстояние от точки A до точки B равно модулю разности чисел a и b . Если в качестве точки В взять точку O (начало отсчета), то мы получим определение модуля числа, приведенное в начале этого пункта.

Определение модуля числа через арифметический квадратный корень

Иногда встречается определение модуля через арифметический квадратный корень.

Модуль числа a – это арифметический квадратный корень из квадрата числа a , то есть, .

Для примера вычислим модули чисел −30 и на основании данного определения. Имеем . Аналогично вычисляем модуль двух третьих: .

Определение модуля числа через арифметический квадратный корень также согласуется с определением, данным в первом пункте этой статьи. Покажем это. Пусть a – положительное число, при этом число −a – отрицательное. Тогда и , если же a=0 , то .

Свойства модуля

Модулю присущ ряд характерных результатов — свойства модуля. Сейчас мы приведем основные и наиболее часто используемые из них. При обосновании этих свойств мы будем опираться на определение модуля числа через расстояние.

Начнем с самого очевидного свойства модуля – модуль числа не может быть отрицательным числом. В буквенном виде это свойство имеет запись вида для любого числа a . Это свойство очень легко обосновать: модуль числа есть расстояние, а расстояние не может выражаться отрицательным числом.

Переходим к следующему свойству модуля. Модуль числа равен нулю тогда и только тогда, когда это число есть нуль. Модуль нуля есть нуль по определению. Нулю соответствует начало отсчета, никакая другая точка на координатной прямой нулю не соответствует, так как каждому действительному числу поставлена в соответствие единственная точка на координатной прямой. По этой же причине любому числу, отличному от нуля, соответствует точка, отличная от начала отсчета. А расстояние от начала отсчета до любой точки, отличной от точки O , не равно нулю, так как расстояние между двумя точками равно нулю тогда и только тогда, когда эти точки совпадают. Приведенные рассуждения доказывают, что нулю равен лишь модуль нуля.

Идем дальше. Противоположные числа имеют равные модули, то есть, для любого числа a . Действительно, две точки на координатной прямой, координатами которых являются противоположные числа, находятся на одинаковом расстоянии от начала отсчета, значит модули противоположных чисел равны.

Следующее свойство модуля таково: модуль произведения двух чисел равен произведению модулей этих чисел, то есть, . По определению модуль произведения чисел a и b равен либо a·b , если , либо −(a·b) , если . Из правил умножения действительных чисел следует, что произведение модулей чисел a и b равно либо a·b , , либо −(a·b) , если , что доказывает рассматриваемое свойство.

Модуль частного от деления a на b равен частному от деления модуля числа a на модуль числа b , то есть, . Обоснуем это свойство модуля. Так как частное равно произведению , то . В силу предыдущего свойства имеем . Осталось лишь воспользоваться равенством , которое справедливо в силу определения модуля числа.

Следующее свойство модуля записывается в виде неравенства: , a , b и c – произвольные действительные числа. Записанное неравенство представляет собой ни что иное как неравенство треугольника. Чтобы это стало понятно, возьмем точки A(a) , B(b) , C(c) на координатной прямой, и рассмотрим вырожденный треугольник АВС , у которого вершины лежат на одной прямой. По определению модуля разности равен длине отрезка АВ , — длине отрезка АС , а — длине отрезка СВ . Так как длина любой стороны треугольника не превосходит сумму длин двух других сторон, то справедливо неравенство , следовательно, справедливо и неравенство .

Только что доказанное неравенство намного чаще встречается в виде . Записанное неравенство обычно рассматривают как отдельное свойство модуля с формулировкой: «Модуль суммы двух чисел не превосходит сумму модулей этих чисел». Но неравенство напрямую следует из неравенства , если в нем вместо b положить −b , и принять c=0 .

Модуль комплексного числа

Дадим определение модуля комплексного числа. Пусть нам дано комплексное число, записанное в алгебраической форме , где x и y – некоторые действительные числа, представляющие собой соответственно действительную и мнимую части данного комплексного числа z , а – мнимая единица.

Модулем комплексного числа z=x+i·y называется арифметический квадратный корень из суммы квадратов действительной и мнимой части данного комплексного числа.

Модуль комплексного числа z обозначается как , тогда озвученное определение модуля комплексного числа может быть записано в виде .

Данное определения позволяет вычислить модуль любого комплексного числа в алгебраической форме записи. Для примера вычислим модуль комплексного числа . В этом примере действительная часть комплексного числа равна , а мнимая – минус четырем. Тогда по определению модуля комплексного числа имеем .

Геометрическую интерпретацию модуля комплексного числа можно дать через расстояние, по аналогии с геометрической интерпретацией модуля действительного числа.

Модуль комплексного числа z – это расстояние от начала комплексной плоскости до точки, соответствующей числу z в этой плоскости.

По теореме Пифагора расстояние от точки O до точки с координатами (x, y) находится как , поэтому, , где . Следовательно, последнее определение модуля комплексного числа согласуется с первым.

Данное определение также позволяет сразу указать, чему равен модуль комплексного числа z , если оно записано в тригонометрической форме как или в показательной форме . Здесь . Например, модуль комплексного числа равен 5 , а модуль комплексного числа равен .

Можно также заметить, что произведение комплексного числа на комплексно сопряженное число дает сумму квадратов действительной и мнимой части. Действительно, . Полученное равенство позволяет дать еще одно определение модуля комплексного числа.

Модуль комплексного числа z – это арифметический квадратный корень из произведения этого числа и числа, комплексно сопряженного с ним, то есть, .

В заключение отметим, что все свойства модуля, сформулированные в соответствующем пункте, справедливы и для комплексных чисел.

Уравнения с модулем. Средний уровень.

Хочешь проверить свои силы и узнать результат насколько ты готов к ЕГЭ или ОГЭ?

Уравнения с модулем делятся на три вида, каждый вид имеет свой подход к решению:

1. Уравнения вида

2. Уравнения вида .

3. Уравнения вида .

Надеюсь, ты уже усвоил тему «Модуль числа»?

Решение уравнений с модулем может быть самостоятельной задачей, но часто такие уравнения могут возникнуть при решении уравнений другого типа, например, квадратных.

Вот пример подобной ситуации:

Видно, что в правой части – квадрат числа :

Казалось бы, теперь достаточно просто убрать квадраты слева и справа, и получим линейное уравнение. Но нет! В таких ситуациях нужно быть предельно осторожным: ведь ты же помнишь простое правило: ?

Вот и появляется на сцене наш модуль:

Чтобы не теряться в таких случаях, давай разберемся, что из себя представляет решение уравнений с модулем , а именно – уравнений вида .

Решение уравнений с модулем вида

Уравнения такого вида решаем, основываясь на свойствах модуля, которые мы разобрали в теме «Модуль» .
Давай разбираться на примерах. Необходимо решить уравнение вида:

Что такое ? Это просто , если больше либо равно нулю, или , если меньше нуля. То есть можно формализовано записать так:

А если вот такое уравнение:

Эти рассуждения можно было и обойти, вспомнив основное свойство модуля: модуль всегда положителен либо равен нулю.

Если обобщить разобранные выше примеры, то можно написать общее правило для решения уравнений вида :

Попробуем применить это правило для такого уравнения:

Выражение под знаком модуля изменилось, но на логике рассуждений это не отражается, поэтому давай решать уравнение, применяя наше правило:

В нашем примере под » » подразумевается » «, а значение . Зная это, получаем:

А если уравнение имеет вид:

Что-то меняется в рассуждениях? Конечно, нет! Ну, тогда давай решать его!

Уловил? Закрепим на примерах:

Решения:

Надеюсь, ты уже усвоил тему «Модуль числа»?

Уравнения с модулем могут быть самостоятельной задачей, но часто могут возникнуть при решении уравнений другого типа, например, иррациональных или даже квадратных.

Кстати, ты знаешь, что у нас можной пройти пробный ЕГЭ в онлайне. прямо сейчас и получить результа немедленно. Если тебе это не нужно, читай дальше 🙂

Вот пример подобной ситуации:

Мы могли бы раскрыть скобки, перенести все в одну сторону, привести подобные и решить обычное квадратное уравнение (например, через дискриминант). Но здесь удобнее поступить по-другому. Заметим, что в правой части уравнения – формула сокращённого умножения квадрат суммы:

Тогда уравнение станет таким:

Казалось бы, теперь достаточно просто убрать квадраты слева и справа, и получим линейное уравнение. Но нет! В таких ситуациях нужно быть предельно осторожным: ведь ты же помнишь простое правило: ?

Вот и появляется на сцене наш модуль:

Чтобы не теряться в таких случаях, научимся решать уравнения с модулем.

Уравнения с модулем.

Уравнения с модулем делятся на три типа.

1. Уравнения вида

Большинство уравнений с модулем можно решить, используя одно только определение модуля. Например:

Решите уравнение

Что такое ? Это просто , если , или , если . То есть:

Ответ:

Другой пример:

И правда, вспомним свойство №1: , то есть модуль всегда неотрицателен.

Итак, мы выработали общее правило решения простейших уравнений с модулем:

Ещё примеры (как обычно, пробуй решить их сам, потом смотри решения):

Решения:​

2. Уравнения вида .

Если начнём раскрывать модули по определению, натолкнёмся на множество проверок: какое число больше нуля, какое меньше; в итоге получим большую совокупность, которая затем упростится. Но можно сделать так, чтобы сразу было всё кратко.

Для этого вспомним свойство модуля №7: . С помощью этого свойства можем избавляться от модулей:

Пример:

Решение:

Реши самостоятельно:

Ответы:

3. Уравнения вида .

Отличие от первого типа уравнений в том, что в правой части тоже переменная. А она может быть как положительной, так и отрицательной. Поэтому в её неотрицательности нужно специально убедиться, ведь модуль не может равняться отрицательному числу (свойство №1):

Пример:

Решение:

Если пропустить проверку на неотрицательность правой части, можно ошибочно написать в ответе сторонние корни, и таким образом потерять баллы. Давайте проверим: действительно ли надо выбросить корень ? Подставим его в исходное уравнение :

Теперь задачи для самостоятельного решения:

Ответы:

Решим квадратные уравнения и . Дискриминант у них одинаковый:

Итак, исходное уравнение равносильно системе

Ответ:

Метод интервалов в задачах с модулем.

Решение:

Рассмотрим первый модуль . По определению он раскрывается «с плюсом» (то есть выражение под модулем не меняется), если , и «с минусом» (то есть все знаки меняются на противоположные), если :

Аналогично и со вторым:

Проблема только в том, что теперь нам нужно рассмотреть очень много вариантов: по варианта для каждого модуля, итого четыре разных, но похожих друг на друга, уравнения. Если модулей будет не два, а три, получится уже уравнений! Можно ли как-то сократить количество вариантов? Да, можно – ведь не все условия могут выполняться одновременно: и противоречат друг другу. Поэтому нет смысла раскрывать второй модуль «с плюсом», если первый раскрыт «с минусом». Значит, здесь у нас на одно уравнение меньше.

Теперь систематизируем то, что мы только что выяснили, и разработаем последовательность действий в таких примерах.

Примеры:

1. Определим корни подмодульных выражений – такие , при которых выражения равны нулю:

2. Отметим корни выражений под модулями на числовой оси:

3. Подпишем у каждого из получившихся интервалов, какой знак принимает каждое из наших подмодульных выражений.

4. Для каждого интервала запишем и решим уравнение. Важно проследить, чтобы ответы соответствовали интервалу!

I. . Здесь оба модуля раскрываем «с минусом»:

-3″> – этот корень сторонний.

II. . Здесь первый модуль раскрываем «с плюсом», а второй — «с минусом»:

– этот корень попадает в «свой» интервал, значит, он подходит.

III. . Здесь оба модуля раскрываем «с плюсом»:

– этот корень тоже является решением.

Проверим полученные корни:

I. (корень и правда сторонний).

II. .

III. .

Ответ:

Примеры:

Решения:

Модуль в модуле

В некоторых уравнениях встречается «вложенный» модуль, то есть модуль какого-то выражения является частью подмодульного выражения, например:

Что делать в таком случае? Все банально: раскрывать модули. Но раскрывать их нужно по очереди. Какой будем раскрывать первым? А это зависит от того, каким методом ты хочешь решить это уравнение. Рассмотрим два возможных варианта:

I. Данное уравнение является уравнением вида

В этом случае первый способ решения будет стандартным для такого типа:

– подмодульное выражение – в нашем примере это , то есть:

Получили два элементарных уравнения такого же типа, то есть:

Эти четыре числа и будут ответом, можешь проверить их подстановкой в исходное уравнение.

II. Есть ещё один, более универсальный способ, который подойдёт для любых задач, не попадающих ни в какой из стандартных типов. Что это за метод? Метод интервалов.

В этом случае нужно раскрывать модули начиная с самых «глубоких», то есть «внутренних». В нашем случае внутренним будет модуль, выделенный красным цветом:

Чтобы раскрыть его, надо рассмотреть 2 случая: и , то есть уравнение распадается на два уравнения:

Комментарии

у вас ошибка в теме Уравнения вида ∣x∣=y там где для самостоятельной работы второй номер

Антон, спасибо, ошибка исправлена.

В теме «Метод интервалов в задачах с модулем» во втором примере для самостоятельного решения, кажется, ошибка — не правильно знаки значений выражений расставлены. 3+2х во втором промежутке +, а х+1 во втором у меня выходит -.

Герман, спасибо, исправил.

Согласен с Германом — во втором примере, во втором промежутке будет (- + -)

Спасибо огромное,повторил,сдал на отлично,Алексею нобелевскую по математике)

Марк, наши поздравления с отличной сдачей. Премию Алексею передам 🙂

нобелевские по математике не присуждаются .

Наградим поощрительной грамотой )

Добрый день! В пункте №3 Уравнения вида ∣x∣=y во втором примере: −2∣x+4∣=3−x, откуда дальше в решении появляется коэффициент 4 в правой части? −2∣x+4∣=3−4x Спасибо за ответ и Ваш чудесный и полезный сайт!

Роман, привет! Спасибо за замечания и слова благодарности. Очень ценно. Алексей Шевчук проверит и поправит, если там ошибка. Еще раз спасибо!

Роман, спасибо. Это была опечатка в условии.

А как решить такой пример 7|2-4|+4*-8

помогите,пожалуйста,решить уравнение дробь в модуле :числитель 13,296 знаменатель 3.71 минус модуль 0,4х минус4,7 модуль закрывается,далее от дроби минус 2,2 умножить на 1,4.Еще раз обращаю внимание: сама дробь в модуле И равно 8 Пожалуйста помогите

Распространение материалов без согласования допустимо при наличии dofollow-ссылки на страницу-источник.

Политика конфиденциальности

Соблюдение Вашей конфиденциальности важно для нас. По этой причине, мы разработали Политику Конфиденциальности, которая описывает, как мы используем и храним Вашу информацию. Пожалуйста, ознакомьтесь с нашими правилами соблюдения конфиденциальности и сообщите нам, если у вас возникнут какие-либо вопросы.

Сбор и использование персональной информации

Под персональной информацией понимаются данные, которые могут быть использованы для идентификации определенного лица либо связи с ним.

От вас может быть запрошено предоставление вашей персональной информации в любой момент, когда вы связываетесь с нами.

Ниже приведены некоторые примеры типов персональной информации, которую мы можем собирать, и как мы можем использовать такую информацию.

Какую персональную информацию мы собираем:

  • Когда вы оставляете заявку на сайте, мы можем собирать различную информацию, включая ваши имя, номер телефона, адрес электронной почты и т.д.

Как мы используем вашу персональную информацию:

  • Собираемая нами персональная информация позволяет нам связываться с вами и сообщать об уникальных предложениях, акциях и других мероприятиях и ближайших событиях.
  • Время от времени, мы можем использовать вашу персональную информацию для отправки важных уведомлений и сообщений.
  • Мы также можем использовать персональную информацию для внутренних целей, таких как проведения аудита, анализа данных и различных исследований в целях улучшения услуг предоставляемых нами и предоставления Вам рекомендаций относительно наших услуг.
  • Если вы принимаете участие в розыгрыше призов, конкурсе или сходном стимулирующем мероприятии, мы можем использовать предоставляемую вами информацию для управления такими программами.

Раскрытие информации третьим лицам

Мы не раскрываем полученную от Вас информацию третьим лицам.

  • В случае если необходимо — в соответствии с законом, судебным порядком, в судебном разбирательстве, и/или на основании публичных запросов или запросов от государственных органов на территории РФ — раскрыть вашу персональную информацию. Мы также можем раскрывать информацию о вас если мы определим, что такое раскрытие необходимо или уместно в целях безопасности, поддержания правопорядка, или иных общественно важных случаях.
  • В случае реорганизации, слияния или продажи мы можем передать собираемую нами персональную информацию соответствующему третьему лицу – правопреемнику.

Защита персональной информации

Мы предпринимаем меры предосторожности — включая административные, технические и физические — для защиты вашей персональной информации от утраты, кражи, и недобросовестного использования, а также от несанкционированного доступа, раскрытия, изменения и уничтожения.

Соблюдение вашей конфиденциальности на уровне компании

Для того чтобы убедиться, что ваша персональная информация находится в безопасности, мы доводим нормы соблюдения конфиденциальности и безопасности до наших сотрудников, и строго следим за исполнением мер соблюдения конфиденциальности.

Спасибо за сообщение!

Ваш комментарий принят, после модерации он будет опубликован на данной странице.

Хотите узнать что скрыто под катом и получать эксклюзивные материалы по подготовке к ОГЭ и ЕГЭ? Оставьте e-mail

Как решать уравнения с модулем: основные правила

30 декабря 2016

Модуль — одна из тех вещей, о которых вроде-бы все слышали, но в действительности никто нормально не понимает. Поэтому сегодня будет большой урок, посвящённый решению уравнений с модулями.

Сразу скажу: урок будет несложный. И вообще модули — вообще тема относительно несложная. «Да конечно, несложная! У меня от неё мозг разрывается!» — скажут многие ученики, но все эти разрывы мозга происходят из-за того, что у большинства людей в голове не знания, а какая-то хрень. И цель этого урока — превратить хрень в знания.:)

Немного теории

Итак, поехали. Начнём с самого важного: что такое модуль? Напомню, что модуль числа — это просто то же самое число, но взятое без знака «минус». Т.е., например, $\left| -5 \right|=5$. Или $\left| -129,5 \right|=129,5$.

Вот так всё просто? Да, просто. А чему тогда равен модуль положительного числа? Тут ещё проще: модуль положительного числа равен самому этому числу: $\left| 5 \right|=5$; $\left| 129,5 \right|=129,5$ и т.д.

Получается любопытная вещь: разные числа могут иметь один тот же модуль. Например: $\left| -5 \right|=\left| 5 \right|=5$; $\left| -129,5 \right|=\left| 129,5 \right|=129,5$. Нетрудно заметить, что это за числа, у которых модули одинаковые: эти числа противоположны. Таким образом, отметим для себя, что модули противоположных чисел равны:

\[\left| -a \right|=\left| a \right|\]

Ещё один важный факт: модуль никогда не бывает отрицательным. Какое бы число мы ни взяли — хоть положительное, хоть отрицательное — его модуль всегда оказывается положительным (или в крайнем случае нулём). Именно поэтому модуль часто называют абсолютной величиной числа.

Кроме того, если объединить определение модуля для положительного и отрицательного числа, то получим глобальное определение модуля для всех чисел. А именно: модуль числа равен самому этому числу, если число положительное (или ноль), либо равен противоположному числу, если число отрицательное. Можно записать это в виде формулы:

\[\left| a \right|=\left\< \begin& a,\quad a\ge 0, \\& -a,\quad a \lt 0. \\\end \right.\]

Ещё есть модуль нуля, но он всегда равен нулю. Кроме того, ноль — единственное число, которое не имеет противоположного.

Таким образом, если рассмотреть функцию $y=\left| x \right|$ и попробовать нарисовать её график, то получится вот такая «галка»:

График модуля и пример решения уравнения

Из этой картинки сразу видно, что $\left| -m \right|=\left| m \right|$, а график модуля никогда не опускается ниже оси абсцисс. Но это ещё не всё: красной линией отмечена прямая $y=a$, которая при положительных $a$ даёт нам сразу два корня: $<_<1>>$ и $<_<2>>$, но об этом мы поговорим позже.:)

Помимо чисто алгебраического определения, есть геометрическое. Допустим, есть две точки на числовой прямой: $<_<1>>$ и $<_<2>>$. В этом случае выражение $\left| <_<1>>-<_<2>> \right|$ — это просто расстояние между указанными точками. Или, если угодно, длина отрезка, соединяющего эти точки:

Модуль — это расстояние между точками на числовой прямой

Из этого определения также следует, что модуль всегда неотрицателен. Но хватит определений и теории — перейдём к настоящим уравнениям.:)

Основная формула

Ну хорошо, с определением разобрались. Но легче-то от этого не стало. Как решать уравнения, содержащие этот самый модуль?

Спокойствие, только спокойствие. Начнём с самых простых вещей. Рассмотрим что-нибудь типа такого:

Итак, модуль$x$ равен 3. Чему может быть равен $x$? Ну, судя по определению, нас вполне устроит $x=3$. Действительно:

А есть ли другие числа? Кэп как бы намекает, что есть. Например, $x=-3$ — для него тоже $\left| -3 \right|=3$, т.е. требуемое равенство выполняется.

Так может, если поискать, подумать, мы найдём ещё числа? А вот обломитесь: больше чисел нет. Уравнение $\left| x \right|=3$ имеет лишь два корня: $x=3$ и $x=-3$.

Теперь немного усложним задачу. Пусть вместо переменной $x$ под знаком модуля тусуется функция $f\left( x \right)$, а справа вместо тройки поставим произвольное число $a$. Получим уравнение:

\[\left| f\left( x \right) \right|=a\]

Ну и как такое решать? Напомню: $f\left( x \right)$ — произвольная функция, $a$ — любое число. Т.е. вообще любое! Например:

\[\left| 2x+1 \right|=5\]

\[\left| 10x-5 \right|=-65\]

Обратим внимание на второе уравнение. Про него сразу можно сказать: корней у него нет. Почему? Всё правильно: потому что в нём требуется, чтобы модуль был равен отрицательному числу, чего никогда не бывает, поскольку мы уже знаем, что модуль — число всегда положительное или в крайнем случае ноль.

А вот с первым уравнением всё веселее. Тут два варианта: либо под знаком модуля стоит положительное выражение, и тогда$\left| 2x+1 \right|=2x+1$, либо это выражение всё-таки отрицательное, и тогда $\left| 2x+1 \right|=-\left( 2x+1 \right)=-2x-1$. В первом случае наше уравнение перепишется так:

\[\left| 2x+1 \right|=5\Rightarrow 2x+1=5\]

И внезапно получается, что подмодульное выражение $2x+1$ действительно положительно — оно равно числу 5. Т.е. мы можем спокойно решать это уравнение — полученный корень будет кусочком ответа:

\[2x+1=5\Rightarrow 2x=4\Rightarrow x=2\]

Особо недоверчивые могут попробовать подставить найденный корень в исходное уравнение и убедиться, что действительно под модулем будет положительное число.

Теперь разберём случай отрицательного подмодульного выражения:

\[\left\< \begin& \left| 2x+1 \right|=5 \\& 2x+1 \lt 0 \\\end \right.\Rightarrow -2x-1=5\Rightarrow 2x+1=-5\]

Опа! Снова всё чётко: мы предположили, что $2x+1 \lt 0$, и в результате получили, что $2x+1=-5$ — действительно, это выражение меньше нуля. Решаем полученное уравнение, при этом уже точно зная, что найденный корень нас устроит:

\[2x+1=-5\Rightarrow 2x=-6\Rightarrow x=-3\]

Итого мы вновь получили два ответа: $x=2$ и $x=3$. Да, объём вычислений оказался малость побольше, чем в совсем уж простом уравнении $\left| x \right|=3$, но принципиально ничего не изменилось. Так может, существует какой-то универсальный алгоритм?

Да, такой алгоритм существует. И сейчас мы его разберём.

Избавление от знака модуля

Пусть нам дано уравнение $\left| f\left( x \right) \right|=a$, причём $a\ge 0$ (иначе, как мы уже знаем, корней нет). Тогда можно избавиться от знака модуля по следующему правилу:

\[\left| f\left( x \right) \right|=a\Rightarrow f\left( x \right)=\pm a\]

Таким образом, наше уравнение с модулем распадается на два, но уже без модуля. Вот и вся технология! Попробуем решить парочку уравнений. Начнём вот с такого

\[\left| 5x+4 \right|=10\Rightarrow 5x+4=\pm 10\]

Отдельно рассмотрим, когда справа стоит десятка с плюсом, и отдельно — когда с минусом. Имеем:

Вот и всё! Получили два корня: $x=1,2$ и $x=-2,8$. Всё решение заняло буквально две строчки.

Ок, не вопрос, давайте рассмотрим что-нибудь чуть посерьёзнее:

\[\left| 7-5x \right|=13\]

Опять раскрываем модуль с плюсом и минусом:

Опять пара строчек — и ответ готов! Как я и говорил, в модулях нет ничего сложного. Нужно лишь запомнить несколько правил. Поэтому идём дальше и приступаем с действительно более сложным задачам.

Случай переменной правой части

А теперь рассмотрим вот такое уравнение:

\[\left| 3x-2 \right|=2x\]

Это уравнение принципиально отличается от всех предыдущих. Чем? А тем, что справа от знака равенства стоит выражение $2x$ — и мы не можем заранее знать, положительное оно или отрицательное.

Как быть в таком случае? Во-первых, надо раз и навсегда понять, что если правая часть уравнения окажется отрицательной, то уравнение не будет иметь корней — мы уже знаем, что модуль не может быть равен отрицательному числу.

А во-вторых, если права часть всё-таки положительна (или равна нулю), то можно действовать точно так же, как раньше: просто раскрыть модуль отдельно со знаком «плюс» и отдельно — со знаком «минус».

Таким образом, сформулируем правило для произвольных функций $f\left( x \right)$ и $g\left( x \right)$ :

\[\left| f\left( x \right) \right|=g\left( x \right)\Rightarrow \left\< \begin& f\left( x \right)=\pm g\left( x \right), \\& g\left( x \right)\ge 0. \\\end \right.\]

Применительно к нашему уравнению получим:

\[\left| 3x-2 \right|=2x\Rightarrow \left\< \begin& 3x-2=\pm 2x, \\& 2x\ge 0. \\\end \right.\]

Ну, с требованием $2x\ge 0$ мы как-нибудь справимся. В конце концов, можно тупо подставить корни, которые мы получим из первого уравнения, и проверить: выполняется неравенство или нет.

Поэтому решим-ка само уравнение:

Ну и какой их этих двух корней удовлетворяет требованию $2x\ge 0$? Да оба! Поэтому в ответ пойдут два числа: $x=<4>/<3>\;$ и $x=0$. Вот и всё решение.:)

Подозреваю, что кто-то из учеников уже начал скучать? Что ж, рассмотрим ещё более сложное уравнение:

Хоть оно и выглядит злобно, по факту это всё то же самое уравнение вида «модуль равен функции»:

\[\left| f\left( x \right) \right|=g\left( x \right)\]

И решается оно точно так же:

С неравенством мы потом разберёмся — оно какое-то уж слишком злобное (на самом деле простое, но мы его решать не будем). Пока лучше займёмся полученными уравнениями. Рассмотрим первый случай — это когда модуль раскрывается со знаком «плюс»:

Ну, тут и ежу понятно, что нужно всё собрать слева, привести подобные и посмотреть, что получится. А получится вот что:

Выносим общий множитель $<^<2>>$ за скобку и получаем очень простое уравнение:

Тут мы воспользовались важным свойством произведения, ради которого мы и раскладывали исходный многочлен на множители: произведение равно нулю, когда хотя бы один из множителей равен нулю.

Теперь точно так же разберёмся со вторым уравнением, которое получается при раскрытии модуля со знаком «минус»:

Опять то же самое: произведение равно нулю, когда равен нулю хотя бы один из множителей. Имеем:

Ну вот мы получили три корня: $x=0$, $x=1,5$ и $x=<2>/<3>\;$. Ну и что из этого набора пойдёт в окончательный ответ? Для этого вспомним, что у нас есть дополнительное ограничение в виде неравенства:

Как учесть это требование? Да просто подставим найденные корни и проверим: выполняется неравенство при этих $x$ или нет. Имеем:

Таким образом, корень $x=1,5$ нас не устраивает. И в ответ пойдут лишь два корня:

Как видите, даже в этом случае ничего сложного не было — уравнения с модулями всегда решаются по алгоритму. Нужно лишь хорошо разбираться в многочленах и неравенствах. Поэтому переходим к более сложным задачам — там уже будет не один, а два модуля.

Уравнения с двумя модулями

До сих пор мы изучали лишь самые простые уравнения — там был один модуль и что-то ещё. Это «что-то ещё» мы отправляли в другую часть неравенства, подальше от модуля, чтобы в итоге всё свелось к уравнению вида $\left| f\left( x \right) \right|=g\left( x \right)$ или даже более простому $\left| f\left( x \right) \right|=a$.

Но детский сад закончился — пора рассмотреть что-нибудь посерьёзнее. Начнём с уравнений вот такого типа:

\[\left| f\left( x \right) \right|=\left| g\left( x \right) \right|\]

Это уравнение вида «модуль равен модулю». Принципиально важным моментом является отсутствие других слагаемых и множителей: только один модуль слева, ещё один модуль справа — и ничего более.

Кто-нибудь сейчас подумает, что такие уравнения решаются сложнее, чем то, что мы изучали до сих пор. А вот и нет: эти уравнения решаются даже проще. Вот формула:

\[\left| f\left( x \right) \right|=\left| g\left( x \right) \right|\Rightarrow f\left( x \right)=\pm g\left( x \right)\]

Всё! Мы просто приравниваем подмодульные выражения, ставя перед одним из них знак «плюс-минус». А затем решаем полученные два уравнения — и корни готовы! Никаких дополнительных ограничений, никаких неравенств и т.д. Всё очень просто.

Давайте попробуем решать вот такую задачу:

\[\left| 2x+3 \right|=\left| 2x-7 \right|\]

Элементарно, Ватсон! Раскрываем модули:

\[\left| 2x+3 \right|=\left| 2x-7 \right|\Rightarrow 2x+3=\pm \left( 2x-7 \right)\]

Рассмотрим отдельно каждый случай:

В первом уравнении корней нет. Потому что когда это $3=-7$? При каких значениях $x$? «Какой ещё нафиг $x$? Ты обкурился? Там вообще нет $x$» — скажете вы. И будете правы. Мы получили равенство, не зависящее от переменной $x$, и при этом само равенство — неверное. Потому и нет корней.:)

Со вторым уравнением всё чуть интереснее, но тоже очень и очень просто:

\[2x+3=-2x+7\Rightarrow 4x=4\Rightarrow x=1\]

Как видим, всё решилось буквально в пару строчек — другого от линейного уравнения мы и не ожидали.:)

В итоге окончательный ответ: $x=1$.

Ну как? Сложно? Конечно, нет. Попробуем что-нибудь ещё:

Опять у нас уравнение вида $\left| f\left( x \right) \right|=\left| g\left( x \right) \right|$. Поэтому сразу переписываем его, раскрывая знак модуля:

Возможно, кто-то сейчас спросит: «Эй, что за бред? Почему «плюс-минус» стоит у правого выражения, а не у левого?» Спокойно, сейчас всё объясню. Действительно, по-хорошему мы должны были переписать наше уравнение следующим образом:

Затем нужно раскрыть скобки, перенести все слагаемые в одну сторону от знака равенства (поскольку уравнение, очевидно, в обоих случаях будет квадратным), ну и дальше отыскать корни. Но согласитесь: когда «плюс-минус» стоит перед тремя слагаемыми (особенно когда одно из этих слагаемых — квадратное выражение), это как-то более сложно выглядит, нежели ситуация, когда «плюс-минус» стоит лишь перед двумя слагаемыми.

Но ведь ничто не мешает нам переписать исходное уравнение следующим образом:

\[\left| x-1 \right|=\left| <^<2>>-3x+2 \right|\Rightarrow \left| <^<2>>-3x+2 \right|=\left| x-1 \right|\]

Что произошло? Да ничего особенного: просто поменяли левую и правую часть местами. Мелочь, которая в итоге немного упростит нам жизнь.:)

В общем, решаем это уравнение, рассматривая варианты с плюсом и с минусом:

Первое уравнение имеет корни $x=3$ и $x=1$. Второе вообще является точным квадратом:

Поэтому у него единственный корень: $x=1$. Но этот корень мы уже получали ранее. Таким образом, в итоговый ответ пойдут лишь два числа:

Миссия выполнена! Можно взять с полки и скушать пирожок. Там их 2, ваш средний.:)

Важное замечание. Наличие одинаковых корней при разных вариантах раскрытия модуля означает, что исходные многочлены раскладываются на множители, и среди этих множителей обязательно будет общий. Действительно:

Одно из свойств модуля: $\left| a\cdot b \right|=\left| a \right|\cdot \left| b \right|$ (т.е. модуль произведения равен произведению модулей), поэтому исходное уравнение можно переписать так:

\[\left| x-1 \right|=\left| x-1 \right|\cdot \left| x-2 \right|\]

Как видим, у нас действительно возник общий множитель. Теперь, если собрать все модули с одной стороны, то можно вынести этот множитель за скобку:

Ну а теперь вспоминаем, что произведение равно нулю, когда хотя бы один из множителей равен нулю:

\[\left[ \begin& \left| x-1 \right|=0, \\& \left| x-2 \right|=1. \\\end \right.\]

Таким образом, исходное уравнение с двумя модулями свелось к двум простейшим уравнениям, о которых мы говорили в самом начале урока. Такие уравнения решаются буквально в пару строчек.:)

Данное замечание, возможно, покажется излишне сложным и неприменимым на практике. Однако в реальности вам могут встретиться куда более сложные задачи, нежели те, что мы сегодня разбираем. В них модули могут комбинироваться с многочленами, арифметическими корнями, логарифмами и т.д. И в таких ситуациях возможность понизить общую степень уравнения путём вынесения чего-либо за скобку может оказаться очень и очень кстати.:)

Теперь хотелось бы разобрать ещё одно уравнение, которое на первый взгляд может показаться бредовым. На нём «залипают» многие ученики — даже те, которые считают, что хорошо разобрались в модулях.

Тем не менее, это уравнение решается даже проще, чем то, что мы рассматривали ранее. И если вы поймёте почему, то получите ещё один приём для быстрого решения уравнений с модулями.

Нет, это не опечатка: между модулями именно плюс. И нам нужно найти, при каких $x$ сумма двух модулей равна нулю.:)

В чём вообще проблема? А проблема в том, что каждый модуль — число положительное, либо в крайнем случае ноль. А что будет, если сложить два положительных числа? Очевидно, снова положительное число:

Последняя строчка может натолкнуть на мысль: единственный случай, когда сумма модулей равна нулю — это если каждый модуль будет равен нулю:

А когда модуль равен нулю? Только в одном случае — когда подмодульное выражение равно нулю:

\[x-<^<3>>=0\Rightarrow x\left( 1-<^<2>> \right)=0\Rightarrow \left[ \begin& x=0 \\& x=\pm 1 \\\end \right.\]

\[<^<2>>+x-2=0\Rightarrow \left( x+2 \right)\left( x-1 \right)=0\Rightarrow \left[ \begin& x=-2 \\& x=1 \\\end \right.\]

Таким образом, у нас есть три точки, в которых обнуляется первый модуль: 0, 1 и −1; а также две точки, в которых обнуляется второй модуль: −2 и 1. Однако нам нужно, чтобы оба модуля обнулялись одновременно, поэтому среди найденных чисел нужно выбрать те, которые входят в оба набора. Очевидно, такое число лишь одно: $x=1$ — это и будет окончательным ответом.

Метод расщепления

Что ж, мы уже рассмотрели кучу задач и изучили множество приёмов. Думаете, на этом всё? А вот и нет! Сейчас мы рассмотрим заключительный приём — и одновременно самый важный. Речь пойдёт о расщеплении уравнений с модулем. О чём вообще пойдёт речь? Давайте вернёмся немного назад и рассмотрим какое-нибудь простое уравнение. Например, это:

\[\left| 3x-5 \right|=5-3x\]

В принципе, мы уже знаем, как решать такое уравнение, потому что это стандартная конструкция вида $\left| f\left( x \right) \right|=g\left( x \right)$. Но попробуем взглянуть на это уравнение немного под другим углом. Точнее, рассмотрим выражение, стоящее под знаком модуля. Напомню, что модуль любого числа может быть равен самому числу, а может быть противоположен этому числу:

\[\left| a \right|=\left\< \begin& a,\quad a\ge 0, \\& -a,\quad a \lt 0. \\\end \right.\]

Собственно, в этой неоднозначности и состоит вся проблема: поскольку число под модулем меняется (оно зависит от переменной), нам неясно — положительное оно или отрицательное.

Но что если изначально потребовать, чтобы это число было положительным? Например, потребуем, чтобы $3x-5 \gt 0$ — в этом случае мы гарантированно получим положительное число под знаком модуля, и от этого самого модуля можно полностью избавиться:

\[3x-5 \gt 0\Rightarrow \left| 3x-5 \right|=3x-5\]

Таким образом, наше уравнение превратится в линейное, которое легко решается:

\[3x-5=5-3x\Rightarrow 6x=10\Rightarrow x=\frac<5><3>\]

Правда, все эти размышления имеют смысл только при условии $3x-5 \gt 0$ — мы сами ввели это требование, дабы однозначно раскрыть модуль. Поэтому давайте подставим найденный $x=\frac<5><3>$ в это условие и проверим:

\[x=\frac<5><3>\Rightarrow 3x-5=3\cdot \frac<5><3>-5=5-5=0\]

Получается, что при указанном значении $x$ наше требование не выполняется, т.к. выражение оказалось равно нулю, а нам нужно, чтобы оно было строго больше нуля. Печалька.:(

Но ничего страшного! Ведь есть ещё вариант $3x-5 \lt 0$. Более того: есть ещё и случай $3x-5=0$ — это тоже нужно рассмотреть, иначе решение будет неполным. Итак, рассмотрим случай $3x-5 \lt 0$:

\[3x-5 \lt 0\Rightarrow \left| 3x-5 \right|=5-3x\]

Очевидно, что в модуль раскроется со знаком «минус». Но тогда возникает странная ситуация: и слева, и справа в исходном уравнении будет торчать одно и то же выражение:

Интересно, при каких таких $x$ выражение $5-3x$ будет равно выражению $5-3x$? От таких уравнений даже Капитан очевидность подавился бы слюной, но мы-то знаем: это уравнение является тождеством, т.е. оно верно при любых значениях переменной!

А это значит, что нас устроят любые $x$. Вместе с тем у нас есть ограничение:

\[3x-5 \lt 0\Rightarrow 3x \lt 5\Rightarrow x \lt \frac<5><3>\]

Другими словами, ответом будет не какое-то отдельное число, а целый интервал:

\[x\in \left( -\infty ;\frac<5> <3>\right)\]

Наконец, осталось рассмотреть ещё один случай: $3x-5=0$. Тут всё просто: под модулем будет ноль, а модуль нуля тоже равен нулю (это прямо следует из определения):

\[3x-5=0\Rightarrow \left| 3x-5 \right|=0\]

Но тогда исходное уравнение $\left| 3x-5 \right|=5-3x$ перепишется следующим образом:

\[0=3x-5\Rightarrow 3x=5\Rightarrow x=\frac<5><3>\]

Этот корень мы уже получали выше, когда рассматривали случай $3x-5 \gt 0$. Более того, это корень является решением уравнения $3x-5=0$ — это ограничение, которое мы сами же и ввели, чтобы обнулить модуль.:)

Таким образом, помимо интервала нас устроит ещё и число, лежащее на самом конце этого интервала:

Объединение корней в уравнениях с модулем

Итого окончательный ответ: $x\in \left( -\infty ;\frac<5> <3>\right]$. Не очень-то привычно видеть такую хрень в ответе к довольно простому (по сути — линейному) уравнению с модулем, правда? Что ж, привыкайте: в том и состоит сложность модуля, что ответы в таких уравнениях могут оказаться совершенно непредсказуемыми.

Куда важнее другое: мы только что разобрали универсальный алгоритм решения уравнения с модуляем! И состоит этот алгоритм из следующих шагов:

  1. Приравнять каждый модуль, имеющийся в уравнении, к нулю. Получим несколько уравнений;
  2. Решить все эти уравнения и отметить корни на числовой прямой. В результате прямая разобьётся на несколько интервалов, на каждом из которых все модули однозначно раскрываются;
  3. Решить исходное уравнение для каждого интервала и объединить полученные ответы.

Вот и всё! Остаётся лишь один вопрос: куда девать сами корни, полученные на 1-м шаге? Допустим, у нас получилось два корня: $x=1$ и $x=5$. Они разобьют числовую прямую на 3 куска:

Разбиение числовой оси на интервалы с помощью точек

Ну и какие тут интервалы? Понятно, что их три:

  1. Самый левый: $x \lt 1$ — сама единица в интервал не входит;
  2. Центральный: $1\le x \lt 5$ — вот тут единица в интервал входит, однако не входит пятёрка;
  3. Самый правый: $x\ge 5$ — пятёрка входит только сюда!

Я думаю, вы уже поняли закономерность. Каждый интервал включает в себя левый конец и не включает правый.

На первый взгляд, такая запись может показаться неудобной, нелогичной и вообще какой-то бредовой. Но поверьте: после небольшой тренировки вы обнаружите, что именно такой подход наиболее надёжен и при этом не мешает однозначно раскрывать модули. Лучше уж использовать такую схему, чем каждый раз думать: отдавать левый/правый конец в текущий интервал или «перекидывать» его в следующий.

На этом урок заканчивается. Скачивайте задачи для самостоятельного решения, тренируйтесь, сравнивайте с ответами — и увидимся в следующем уроке, который будет посвящён неравенствам с модулями.:)

Это интересно:

  • Правило решения логарифмических неравенств Логарифмические неравенства При решении логарифмических уравнений и неравенств пользуются свойствами логарифмов, а также свойствами логарифмической функции y=logax, a > 0, a 1: 1) Область определения: x > 0; 2) Область значений: yR; 3) logax1=logax2x1=x2; 4) При a>1 функция y=logax […]
  • Налог на капремонт есть ли льготы Каким категориям граждан в РФ положены льготы на капремонт, как начисляются льготы на оплату по взносам на капитальный ремонт многоквартирных домов Для регулярного проведения капитального ремонта проживающие в многоквартирных домах обязаны производить фиксированные отчисления. Взносы […]
  • Выплата пособия при увольнении военнослужащего НачФин.info " rel="nofollow"> Печать E-mail Подробности Категория: Консультация военного юриста Опубликовано: 30 января 2017 Автор: SobKor Просмотров: 9885 Вопрос: Облагается ли налогом единовременное пособие, выплачиваемое военнослужащим, при увольнении из рядов Вооруженных Сил […]
  • В ладах с законом Жить в ладах с законом пожелал свободненцам прокурор города Константин Числин. 12 января отмечается День работника прокуратуры. В канун праздника мы встретились с прокурором города. Константин Числин в марте отметит годовщину в этой должности и поделился информацией о Свободном не […]
  • Штраф за нарушение режима пребывания Административное наказание за нарушение мигрантами правил въезда и пребывания в РФ хотят ужесточить На рассмотрение Госдумы сегодня внесен законопроект, увеличивающий размер административного штрафа за нарушение иностранными гражданами или лицами без гражданства правил въезда или режима […]
  • Штраф за техосмотр и страховку Существует ли в 2018 году штраф за езду без техосмотра? Каждый водитель знает, что техосмотр проходить нужно регулярно. Но времена меняются, а с ними — и требования к эксплуатации транспортных средств. Раньше любой водитель, не прошедший вовремя процедуру, рисковал получить штраф за […]
  • Порт принтера реестр Исправляем ошибку: "Не удается удалить драйвер принтера. " AJIekceu4 Февраль 21, 2015 79 879 12 97,75% 71 Очень часто при попытке удалить драйверы для принтера, можно столкнуться с трудностями. В этой статье мы расскажем о том, как можно исправить ошибку "Не удается […]
  • Правила поведения в сизо Правила поведения в СИЗО? Как себя вести в первый раз? Как вести себя в СИЗО, если попал туда впервые? Права сидящих в СИЗО. Куда жаловаться, если начальство СИЗО нарушает права обвиняемых и осжденных? От тюрьмы, согласно известной народной пословице, зарекаться не следует. Случаи, […]
Все права защищены. 2018