Советник

Юридические услуги по корпоративному праву

Правило начертательной геометрии

Содержание:

Начертательная геометрия

Начертательная геометрия для студентов на 1-ом курсе и «чайников», желающих с нуля обучиться основам начертательной геометрии и попрактиковаться в решении задач, где подробно изложены примеры их решения.

Чтобы обучиться теории и поупражняться в решении задач по начертательной геометрии -выберите ниже интересующий Вас обучающий материал в виде книги, решебника, задачника, лекции или другого обучающего материала.

Курс начертательной геометрии

Решение задач по начертательной геометрии

Интересные темы

Определение расстояния между точкой и плоскостью, прямой и плоскостью, между плоскостями и скрещивающимися прямыми

Определение расстояний

Смешанные задачи без применения способов преобразования чертежа

Построение проекций плоских фигур

Определение величины углов

Позиционные задачи

Пересечение поверхности плоскостью (построение сечения)

Прямая и точка в плоскости

Построение взаимно перпендикулярных прямых, прямой и плоскости, плоскостей

Построение линии пересечения двух плоскостей

Введение в начертательную геометрию

Начертательная геометрия является одним из разделов геометрии, в котором пространственные фигуры, представляющие собой совокупность точек, линий, поверхностей, изучаются по их проекционным изображениям на плоскости (или какой-либо другой поверхности).

Основными задачами начертательной геометрии являются:

  • а) создание метода изображения геометрических фигур на плоскости (поверхности);
  • б) разработка способов решения позиционных и метрических задач, связанных с этими фигурами, при помощи их изображений на плоскости (поверхности);

Начертательная геометрия по своему содержанию занимает особое положение среди других наук: она является лучшим средством развития у человека пространственного воображения, без которого немыслимо никакое инженерное творчество. Начертательная геометрия является теоретической базой для составления чертежа — гениального изобретения человеческой мысли.

Чертеж — это своеобразный язык, с помощью которого, используя всего лишь точки, линии и ограниченное число геометрических знаков, букв и цифр, человек имеет возможность изобразить на поверхности, в частности на плоскости, геометрические фигуры или их сочетания (машины, приборы, инженерные сооружения и т. д.). Причем этот графический язык является интернациональным, он понятен любому технически грамотному человеку независимо от того, на каком языке он говорит.

Решение задач способами начертательной геометрии осуществляется графическим путем. Простейшей геометрической операцией, которую приходится выполнять в процессе решения, является определение точки пересечения двух линий. Вследствие того, что все геометрические построения осуществляются с помощью только линейки и циркуля, линиями, точку пересечения которых следует определять, являются прямые и окружности. Иными словами, путем проведения отрезков прямых и дуг окружностей (в редких случаях участков лекальных кривых) в определенной последовательности, устанавливаемой теоремами и правилами начертательной геометрии, можно решать сложные задачи из различных областей науки и техники.

Возможность расчленения процесса решения задач на выполнение элементарных, однотипных операций позволяет получить итерационные способы решения задач, которые легко и естественно могут быть автоматизированы с помощью вычислительной техники. Использование начертательной геометрии является рациональным при конструировании сложных поверхностей технических форм с наперед заданными параметрами, применяемых в авиационной и автомобильной промышленности, при создании корпусов судов и судовых движителей и во многих других областях техники. Достижения многомерной начертательной геометрии находят применение при исследовании диаграмм состояния многокомпонентных систем и сплавов в тех случаях, когда другие способы исследования оказываются чрезвычайно сложными и не обеспечивают требуемой точности.

Известна роль начертательной геометрии в архитектуре, строительстве, изобразительном искусстве. Проекционные способы, разработанные в начертательной геометрии, дают возможность получать наглядные изображения проектируемых объектов и целых комплексов. Благодаря начертательной геометрии появилась возможность изображать на плоскости рельеф земной поверхности и решать простыми графическими способами задачи, связанные с проектированием дорог, каналов, тоннелей, а также определять объемы выполняемых при этом земляных работ. Естественные науки достигают еще большего расцвета в тех случаях, когда изучаемые свойства сопровождаются доступными для человеческого восприятия наглядными геометрическими моделями.

Методы начертательной геометрии, позволяющие решать математические задачи в их графической интерпретации, находят широкое применение в физике, химии, механике, кристаллографии и многих других науках. Как и другие отрасли математики, начертательная геометрия развивает логическое мышление. Приведенный далеко не полный перечень вопросов, которые составляют предмет исследования в начертательной геометрии, не оставляет сомнения, что начертательная геометрия входит в число фундаментальных дисциплин, составляющих основу инженерного образования.

Оглавление

Начертательная геометрия входит в состав учебной дисциплины федерального значения, название которой в зависимости от специальности: «Начертательная геометрия и инженерная графика», «Инженерная и машинная графика» или просто «Инженерная графика». Инженерная графика – это единственная дисциплина целью, которой является непосредственно обучение студентов работе с различной по виду и содержанию графической информацией, основам графического представления информации, методам графического моделирования геометрических объектов, правилам разработки и оформления конструкторской документации, графических моделей явлений и процессов.

Метод Монжа

Если информацию о расстоянии точки относительно плоскости проекции дать не с помощью числовой отметки, а с помощью второй проекции точки, построенной на второй плоскости проекций, то чертеж называют двухкартинным или комплексным. Основные принципы построения таких чертежей изложены Г. Монжем.
Изложенный Монжем метод — метод ортогонального проецирования, причем берутся две проекции на две взаимно перпендикулярные плоскости проекций, — обеспечивая выразительность, точность и удобоизмеримость изображений предметов на плоскости, был и остается основным методом составления технических чертежей

Рисунок 1.1 Точка в системе трех плоскостей проекций

Модель трех плоскостей проекций показана на рисунке 1.1. Третья плоскость, перпендикулярная и П1, и П2, обозначается буквой П3 и называется профильной. Проекции точек на эту плоскость обозначаются заглавными буквами или цифрами с индексом 3. Плоскости проекций, попарно пересекаясь, определяют три оси 0x, 0y и 0z, которые можно рассматривать как систему декартовых координат в пространстве с началом в точке 0. Три плоскости проекций делят пространство на восемь трехгранных углов — октантов. Как и прежде, будем считать, что зритель, рассматривающий предмет, находится в первом октанте. Для получения эпюра точки в системе трех плоскостей проекций плоскости П1 и П3 вращают до совмещения с плоскостью П2. При обозначении осей на эпюре отрицательные полуоси обычно не указывают. Если существенно только само изображение предмета, а не его положение относительно плоскостей проекций, то оси на эпюре не показывают. Координатами называют числа, которые ставят в соответствие точке для определения ее положения в пространстве или на поверхности. В трехмерном пространстве положение точки устанавливают с помощью прямоугольных декартовых координат x , y и z (абсцисса, ордината и аппликата).

Для определения положения прямой в пространстве существуют следующие методы: 1.Двумя точками ( А и В ). Рассмотрим две точки в пространстве А и В (рис. 2.1). Через эти точки можно провести прямую линию получим отрезок [AB]. Для того чтобы найти проекции этого отрезка на плоскости проекций необходимо найти проекции точек А и В и соединить их прямой. Каждая из проекций отрезка на плоскости проекций меньше самого отрезка: [A1B1]<[AB]; [A2B2]<[AB]; [A3B3]<[AB].

Рисунок 2.1 Определение положения прямой по двум точкам

2. Двумя плоскостями (a; b). Этот способ задания определяется тем что две непараллельные плоскости пересекаются в пространстве по прямой линии (этот способ подробно рассматривается в курсе элементарной геометрии).

3. Точкой и углами наклона к плоскостям проекций. Зная координаты точки принадлежащей прямой и углы наклона ее к плоскостям проекций можно найти положение прямой в пространстве.

В зависимости от положения прямой по отношению к плоскостям проекций она может занимать как общее, так и частные положения. 1. Прямая не параллельная ни одной плоскости проекций называется прямой общего положения (рис.3.1).

Рисунок 3.1 Прямая общего положения

2. Прямые параллельные плоскостям проекций, занимают частное положение в пространстве и называются прямыми уровня. В зависимости от того, какой плоскости проекций параллельна заданная прямая, различают:

2.1. Прямые параллельные горизонтальной плоскости проекций называются горизонтальными или горизонталями (рис.3.2).

Рисунок 3.2 Горизонтальная прямая

2.2. Прямые параллельные фронтальной плоскости проекций называются фронтальными или фронталями(рис.3.3).

Рисунок 3.3 Фронтальная прямая

2.3. Прямые параллельные профильной плоскости проекций называются профильными (рис. 3.4).

Рисунок 3.4 Профильная прямая

3. Прямые, перпендикулярные плоскостям проекций, называются проецирующими. Прямая перпендикулярная одной плоскости проекций, параллельна двум другим. В зависимости от того, какой плоскости проекций перпендикулярна исследуемая прямая, различают:

3.1. Фронтально-проецирующая прямая — АВ (рис. 3.5).

Рисунок 3.5 Фронтально-проецирующая прямая

3.2. Профильно проецирующая прямая — АВ (рис.3.6).

Рисунок 3.6 Профильно-проецирующая прямая

3.3. Горизонтально-проецирующая прямая — АВ (рис.3.7).

Рисунок 3.7 Горизонтально-проецирующая прямая

Плоскость – одно из основных понятий геометрии. При систематическом изложении геометрии понятие плоскость обычно принимается за одно из исходных понятий, которое лишь косвенным образом определяется аксиомами геометрии. Некоторые характеристические свойства плоскости: 1. Плоскость есть поверхность, содержащая полностью каждую прямую, соединяющую любые ее точки; 2. Плоскость есть множество точек, равноотстоящих от двух заданных точек.

Способы графического задания плоскостей Положение плоскости в пространстве можно определить:

1. Тремя точками, не лежащими на одной прямой линии (рис.4.1).

Рисунок 4.1 Плоскость заданная тремя точками, не лежащими на одной прямой

2. Прямой линией и точкой, не принадлежащей этой прямой (рис.4.2).

Рисунок 4.2 Плоскость заданная прямой линией и точкой, не принадлежащей этой линии

3. Двумя пересекающимися прямыми (рис.4.3).

Рисунок 4.3 Плоскость заданная двумя пересекающимися прямыми линиями

4. Двумя параллельными прямыми (рис.4.4).

Рисунок 4.4 Плоскость заданная двумя параллельными прямыми линиями

Различное положение плоскости относительно плоскостей проекций

В зависимости от положения плоскости по отношению к плоскостям проекций она может занимать как общее, так и частные положения.

1. Плоскость не перпендикулярная ни одной плоскости проекций называется плоскостью общего положения. Такая плоскость пересекает все плоскости проекций (имеет три следа: — горизонтальный S 1; — фронтальный S 2; — профильный S 3). Следы плоскости общего положения пересекаются попарно на осях в точках ax,ay,az. Эти точки называются точками схода следов, их можно рассматривать как вершины трехгранных углов, образованных данной плоскостью с двумя из трех плоскостей проекций. Каждый из следов плоскости совпадает со своей одноименной проекцией, а две другие разноименные проекции лежат на осях (рис.5.1).

2. Плоскости перпендикулярные плоскостям проекций – занимают частное положение в пространстве и называются проецирующими. В зависимости от того, какой плоскости проекций перпендикулярна заданная плоскость, различают:

2.1. Плоскость, перпендикулярная горизонтальной плоскости проекций ( S ^П1) , называется горизонтально-проецирующей плоскостью. Горизонтальная проекция такой плоскости представляет собой прямую линию, которая одновременно является её горизонтальным следом. Горизонтальные проекции всех точек любых фигур в этой плоскости совпадают с горизонтальным следом (рис.5.2).

Рисунок 5.2 Горизонтально-проецирующая плоскость

2.2. Плоскость, перпендикулярная фронтальной плоскости проекций ( S ^П2) — фронтально-проецирующая плоскость. Фронтальной проекцией плоскости S является прямая линия, совпадающая со следом S 2 (рис.5.3).

Рисунок 5.3 Фронтально-проецирующая плоскость

2.3. Плоскость, перпендикулярная профильной плоскости ( S ^П3) — профильно-проецирующая плоскость. Частным случаем такой плоскости является биссекторная плоскость (рис.5.4).

Рисунок 5.4 Профильно-проецирующая плоскость

3. Плоскости параллельные плоскостям проекций – занимают частное положение в пространстве и называются плоскостями уровня. В зависимости от того, какой плоскости параллельны исследуемая плоскость, различают:

3.1. Горизонтальная плоскость — плоскость параллельная горизонтальной плоскости проекций ( S //П1) — ( S ^П2, S ^П3). Любая фигура в этой плоскости проецируется на плоскость П1 без искажения, а на плоскости П2 и П3 в прямые — следы плоскости S 2 и S 3 (рис.5.5).

Рисунок 5.5 Горизонтальная плоскость

3.2. Фронтальная плоскость — плоскость параллельная фронтальной плоскости проекций ( S //П2), ( S ^П1, S ^П3). Любая фигура в этой плоскости проецируется на плоскость П2 без искажения, а на плоскости П1 и П3 в прямые — следы плоскости S 1 и S 3 (рис.5.6).

Рисунок 5.6 Фронтальная плоскость

3.3. Профильная плоскость — плоскость параллельная профильной плоскости проекций ( S //П3), ( S ^П1, S ^П2). Любая фигура в этой плоскости проецируется на плоскость П3 без искажения, а на плоскости П1 и П2 в прямые — следы плоскости S 1 и S 2 (рис.5.7).

Рисунок 5.7 Профильная плоскость

Следы плоскости

Следом плоскости называется линия пересечения плоскости с плоскостями проекций. В зависимости от того с какой из плоскостей проекций пересекается данная, различают: горизонтальный, фронтальный и профильный следы плоскости.

Каждый след плоскости является прямой линией, для построения которых необходимо знать две точки, либо одну точку и направление прямой( как для построения любой прямой). На рисунке 5.8 показано нахождение следов плоскости S (АВС). Фронтальный след плоскости S 2, построен, как прямая соединяющая две точки 12 и 22, являющиеся фронтальными следами соответствующих прямых, принадлежащих плоскости S . Горизонтальный след S 1 – прямая, проходящая через горизонтальный след прямой АВ и S x. Профильный след S 3 – прямая соединяющая точки ( S y и S z) пересечения горизонтального и фронтального следов с осями.

Рисунок 5.8 Построение следов плоскости

Определение взаимного положения прямой и плоскости — позиционная задача, для решения которой применяется метод вспомогательных секущих плоскостей. Сущность метода заключается в следующем: через прямую проведем вспомогательную секущую плоскость Q и установим относительное положение двух прямых a и b, последняя из которых является линией пересечения вспомогательной секущей плоскости Q и данной плоскости T(рис.6.1).

Рисунок 6.1 Метод вспомогательных секущих плоскостей

Каждому из трех возможных случаев относительного расположения этих прямых соответствует аналогичный случай взаимного расположения прямой и плоскости. Так, если обе прямые совпадают, то прямая а лежит в плоскости T, параллельность прямых укажет на параллельность прямой и плоскости и, наконец, пересечение прямых соответствует случаю когда прямая а пересекает плоскость T. Таким образом возможны три случая относительного расположения прямой и плоскости: Прямая принадлежит плоскости; Прямая параллельна плоскости; Прямая пересекает плоскость, частный случай – прямая перпендикулярна плоскости. Рассмотрим каждый случай.

Прямая линия, принадлежащая плоскости

Аксиома 1. Прямая принадлежит плоскости, если две её точки принадлежат той же плоскости (рис.6.2).

Задача. Дана плоскость (n,k) и одна проекция прямой m2. Требуется найти недостающие проекции прямой m если известно, что она принадлежит плоскости, заданной пересекающимися прямыми n и k. Проекция прямой m2 пересекает прямые n и k в точках В2 и С2, для нахождения недостающих проекций прямой необходимо найти недостающие проекции точек В и С как точек лежащих на прямых соответственно n и k. Таким образом точки В и С принадлежат плоскости заданной пересекающимися прямыми n и k, а прямая m проходит через эти точки, значит согласно аксиоме прямая принадлежит этой плоскости.

Рисунок 6.2 Прямая и плоскость имеют две общие точки

Аксиома 2. Прямая принадлежит плоскости, если имеет с плоскостью одну общую точку и параллельна какой-либо прямой расположенной в этой плоскости (рис.6.3).

Задача. Через точку В провести прямую m если известно, что она принадлежит плоскости заданной пересекающимися прямыми n и k. Пусть В принадлежит прямой n лежащей в плоскости заданной пересекающимися прямыми n и k. Через проекцию В2 проведем проекцию прямой m2 параллельно прямой k2, для нахождения недостающих проекций прямой необходимо построить проекцию точки В1, как точки лежащей на проекции прямой n1 и через неё провести проекцию прямой m1 параллельно проекции k1. Таким образом точки В принадлежат плоскости заданной пересекающимися прямыми n и k, а прямая m проходит через эту точку и параллельна прямой k, значит согласно аксиоме прямая принадлежит этой плоскости.

Рисунок 6.3 Прямая имеет с плоскостью одну общую точку и параллельна прямой расположенной в этой плоскости

Главные линии в плоскости

Среди прямых линий, принадлежащих плоскости, особое место занимают прямые, занимающие частное положение в пространстве:

1. Горизонтали h — прямые, лежащие в данной плоскости и параллельные горизонтальной плоскости проекций (h//П1)(рис.6.4).

Рисунок 6.4 Горизонталь

2. Фронтали f — прямые, расположенные в плоскости и параллельные фронтальной плоскости проекций (f//П2)(рис.6.5).

Рисунок 6.5 Фронталь

3. Профильные прямые р — прямые, которые находятся в данной плоскости и параллельны профильной плоскости проекций (р//П3) (рис.6.6). Следует заметить, что следы плоскости можно отнести тоже к главным линиям. Горизонтальный след — это горизонталь плоскости, фронтальный — фронталь и профильный — профильная линия плоскости.

Рисунок 6.6 Профильная прямая

4. Линия наибольшего ската и её горизонтальная проекция образуют линейный угол j , которым измеряется двугранный угол, составленный данной плоскостью и горизонтальной плоскостью проекций (рис.6.7). Очевидно, что если прямая не имеет двух общих точек с плоскостью, то она или параллельна плоскости, или пересекает ее.

Рисунок 6.7 Линия наибольшего ската

Взаимное расположение точки и плоскости

Возможны два варианта взаимного расположения точки и плоскости: либо точка принадлежит плоскости, либо нет. Если точка принадлежит плоскости то из трех проекций, определяющих положение точки в пространстве, произвольно задать можно только одну. Рассмотрим пример (рис.6.8): Построение проекции точки А принадлежащей плоскости общего положения заданной двумя параллельными прямыми a(a//b).

Задача. Дано: плоскость T(а,в) и проекция точки А2. Требуется построить проекцию А1 если известно, что точка А лежит в плоскости в,а. Через точку А2 проведем проекцию прямой m2, пересекающую проекции прямых a2 и b2 в точках С2 и В2. Построив проекции точек С1 и В1, определяющие положение m1, находим горизонтальную проекцию точки А.

Рисунок 6.8. Точка, принадлежащая плоскости

Две плоскости в пространстве могут быть либо взаимно параллельны, в частном случае совпадая друг с другом, либо пересекаться. Взаимно перпендикулярные плоскости представляют собой частный случай пересекающихся плоскостей.

1. Параллельные плоскости. Плоскости параллельны, если две пересекающиеся прямые одной плоскости соответственно параллельны двум пересекающимся прямым другой плоскости. Это определение хорошо иллюстрируется задачей, через точку В провести плоскость параллельную плоскости, заданной двумя пересекающимися прямыми ab (рис.7.1). Задача. Дано: плоскость общего положения, заданную двумя пересекающимися прямыми ab и точка В. Требуется через точку В провести плоскость, параллельную плоскости ab и задать её двумя пересекающимися прямыми c и d. Согласно определения если две пересекающиеся прямые одной плоскости соответственно параллельны двум пересекающимся прямым другой плоскости то эти плоскости параллельны между собой. Для того чтобы провести на эпюре параллельные прямые необходимо воспользоваться свойством параллельного проецирования — проекции параллельных прямых — параллельны между собой d||a, с||b; d1||a1,с1||b1; d2||a2 ,с2||b2; d3||a3,с3||b3.

Рисунок 7.1. Параллельные плоскости

2. Пересекающиеся плоскости, частный случай – взаимно перпендикулярные плоскости. Линия пересечения двух плоскостей является прямая, для построения которой достаточно определить две её точки, общие обеим плоскостям, либо одну точку и направление линии пересечения плоскостей. Рассмотрим построение линии пересечения двух плоскостей, когда одна из них проецирующая (рис.7.2).

Задача. Дано: плоскость общего положения задана треугольником АВС, а вторая плоскость — горизонтально проецирующая T. Требуется построить линию пересечения плоскостей. Решение задачи заключается в нахождении двух точек общих для данных плоскостей, через которые можно провести прямую линию. Плоскость, заданная треугольником АВС можно представить, как прямые линии (АВ), (АС), (ВС). Точка пересечения прямой (АВ) с плоскостью T — точка D, прямой (AС) -F. Отрезок [DF] определяет линию пересечения плоскостей. Так как T — горизонтально проецирующая плоскость, то проекция D1F1 совпадает со следом плоскости T1, таким образом остается только построить недостающие проекции [DF] на П2 и П3.

Рисунок 7.2. Пересечение плоскости общего положения с горизонтально проецирующей плоскостью

Перейдем к общему случаю. Пусть в пространстве заданы две плоскости общего положения a(m,n) и b (ABC) (рис.7.3).

Рисунок 7.3. Пересечение плоскостей общего положения

Рассмотрим последовательность построения линии пересечения плоскостей a(m//n) и b(АВС). По аналогии с предыдущей задачей для нахождения линии пересечения данных плоскостей проведем вспомогательные секущие плоскости g и d. Найдем линии пересечения этих плоскостей с рассматриваемыми плоскостями. Плоскость g пересекает плоскость a по прямой (12), а плоскость b — по прямой (34). Точка К — точка пересечения этих прямых одновременно принадлежит трем плоскостям a, b и g, являясь таким образом точкой принадлежащей линии пересечения плоскостей a и b. Плоскость d пересекает плоскости a и b по прямым (56) и (7C) соответственно, точка их пересечения М расположена одновременно в трех плоскостях a, b, d и принадлежит прямой линии пересечения плоскостей a и b. Таким образом найдены две точки принадлежащие линии пересечения плоскостей a и b — прямая (КМ).

Некоторого упрощения при построении линии пересечения плоскостей можно достичь, если вспомогательные секущие плоскости проводить через прямые, задающие плоскость.

Взаимно перпендикулярные плоскости. Из стереометрии известно, что две плоскости взаимно перпендикулярны, если одна из них проходит через перпендикуляр к другой. Через точку А можно провести множество плоскостей перпендикулярных данной плоскости a(f,h). Эти плоскости образуют в пространстве пучок плоскостей, осью которого является перпендикуляр опущенный из точки А на плоскость a . Для того чтобы из точки А провести плоскость перпендикулярную плоскости заданной двумя пересекающимися прямыми hf необходимо из точки А провести прямую n перпендикулярную плоскости hf (горизонтальная проекция n перпендикулярна горизонтальной проекции горизонтали h, фронтальная проекция n перпендикулярна фронтальной проекции фронтали f). Любая плоскость проходящая через прямую n будет перпендикулярна плоскости hf, поэтому для задания плоскости через точки А проводим произвольную прямую m. Плоскость заданная двумя пересекающимися прямыми mn будет перпендикулярна плоскости hf (рис.7.4).

Рисунок 7.4. Взаимно перпендикулярные плоскости

Метод плоскопараллельного перемещения

Изменение взаимного положения проецируемого объекта и плоскостей проекций методом плоскопараллельного перемещения осуществляется путем изменения положения геометрического объекта так, чтобы траектория движения её точек находилась в параллельных плоскостях. Плоскости носители траекторий перемещения точек параллельны какой-либо плоскости проекций (рис. 8.1). Траектория произвольная линия. При параллельном переносе геометрического объекта относительно плоскостей проекций, проекция фигуры хотя и меняет свое положение, но остается конгруэнтной проекции фигуры в ее исходном положении.

Рисунок 8.1 Определение натуральной величины отрезка методом плоскопараллельного перемещения

Свойства плоскопараллельного перемещения:

1. При всяком перемещении точек в плоскости параллельной плоскости П1, её фронтальная проекция перемещается по прямой линии, параллельной оси х.

2. В случае произвольного перемещения точки в плоскости параллельной П2, её горизонтальная проекция перемещается по прямой параллельной оси х.

Метод вращения вокруг оси перпендикулярной плоскости проекций

Плоскости носитель траекторий перемещения точек параллельны плоскости проекций. Траектория — дуга окружности, центр которой находится на оси перпендикулярной плоскости проекций. Для определения натуральной величины отрезка прямой общего положения АВ (рис. 8.2), выберем ось вращения (i) перпендикулярную горизонтальной плоскости проекций и проходящую через В1. Повернем отрезок так, чтобы он стал параллелен фронтальной плоскости проекций (горизонтальная проекция отрезка параллельна оси x). При этом точка А1 переместиться в А’1, а точка В не изменит своего положения. Положение точки А’2 находится на пересечении фронтальной проекции траектории перемещения точки А (прямая линия параллельная оси x) и линии связи проведенной из А’1. Полученная проекция В2 А’2 определяет натуральную величину самого отрезка.

Рисунок 8.2 Определение натуральной величины отрезка методом вращения вокруг оси перпендикулярной горизонтальной плоскости проекций

Метод вращения вокруг оси параллельной плоскости проекций

Рассмотрим этот способ на примере определения угла между пересекающимися прямыми (рис.8.3). Рассмотрим две проекции пересекающихся прямых а и в которые пересекаются в точке К. Для то чтобы определить натуральную величину угла между этими прямыми необходимо произвести преобразование ортогональных проекций так, чтобы прямые стали параллельны плоскости проекций. Воспользуемся способом вращения вокруг линии уровня — горизонтали. Проведем произвольно фронтальную проекцию горизонтали h2 параллельно оси Ох, которая пересекает прямые в точках 12 и 22 . Определив проекции 11 и 11, построим горизонтальную проекцию горизонтали h1 . Траектория движения всех точек при вращении вокруг горизонтали — окружность, которая проецируется на плоскость П1 в виде прямой линии перпендикулярной горизонтальной проекции горизонтали.

Рисунок 8.3 Определение угла между пересекающимися прямыми, вращением вокруг оси параллельной горизонтальной плоскости проекций

Таким образом, траектория движения точки К1 определена прямой К1О1, точка О -центр окружности — траектории движения точки К. Чтобы найти радиус этой окружности найдем методом треугольника натуральную величину отрезка КО .Продолжим прямую К1О1 так чтобы |О1К’1|=|КО| . Точка К’1 соответствует точке К , когда прямые а и в лежат в плоскости параллельной П1 и проведенной через горизонталь — ось вращения. С учетом этого через точку К’1 и точки 11 и 21 проведем прямые, которые лежат теперь в плоскости параллельной П1, а следовательно и угол фи — натуральная величина угла между прямыми а и в.

Метод замены плоскостей проекций

Изменение взаимного положения проецируемой фигуры и плоскостей проекций методом перемены плоскостей проекций, достигается путем замены плоскостей П1 и П2 новыми плоскостями П4 (рис. 8.4). Новые плоскости выбираются перпендикулярно старым. Некоторые преобразования проекций требуют двойной замены плоскостей проекций (рис. 8.5). Последовательный переход от одной системы плоскостей проекций другой необходимо осуществлять, выполняя следующее правило: расстояние от новой проекции точки до новой оси должно равняться расстоянию от заменяемой проекции точки до заменяемой оси.

Задача 1: Определить натуральную величину отрезка АВ прямой общего положений (рис. 8.4). Из свойства параллельного проецирования известно, что отрезок проецируется на плоскость в натуральную величину, если он параллелен этой плоскости. Выберем новую плоскость проекций П4, параллельно отрезку АВ и перпендикулярно плоскости П1. Введением новой плоскости, переходим из системы плоскостей П1П2 в систему П1П4 , причем в новой системе плоскостей проекция отрезка А4В4 будет натуральной величиной отрезка АВ.

Рисунок 8.4. Определение натуральной величины отрезка прямой методом замены плоскостей проекций

Задача 2: Определить расстояние от точки C до прямой общего положения, заданной отрезком АВ (рис. 8.5).

Рисунок 8.5. Определение натуральной величины отрезка прямой методом замены плоскостей проекций

Геометрия — основа для начертательной геометрии и инженерной графики

Страницы работы

Содержание работы

НАЧЕРТАТЕЛЬНАЯ ГЕОМЕТРИЯ И ИНЖЕНЕРнАЯ ГРАФИКА

Основой начертательной геометрии и инженерной графики является наука геометрия.

Геометрия изучает геометрические свойства геометрических примитивов, функциональные при геометрических преобразованиях.

2. Отрезок прямой линии (прямая)

3. Отсек плоскости (плоскость)

4. Тело (простые геометрические тела)

1. Перенос (параллельный)

Свойства геометрических примитивов:

Плоскость – площадь, длина периметра, координаты центра тяжести, углы наклона плоскости к плоскостям проекций — α,β,γ и пр.

Тело – объём, площадь поверхности, координаты центра тяжести и др.

Это собственные (абсолютные свойства), есть еще вторая группа свойств – свойства положения (относительные) -параллельность, перпендикулярность и пр.

Основной научный метод – метод моделей.

Типовые задачи геометрии

ТЗ-8 – точка + плоскость

Типовая задача № 1 («задача штирлица»)

Точность построения на рис.1. максимальна, поэтому применяют прямоугольную

(ортогональную) систему координат. Поскольку ПОВОРОТ является инвариантным преобразованием, разворачивание всех трех плоскостей в одну плоскость образует т.н. комплексный чертеж.

Точность пеленгации места выхода в эфир передатчика разведчика выше на рис.1. (отсюда – «задача Штирлица»).

Первое правило Берикова – если в задаче участвуют примитивы «соседних» размерностей, размерность одного из них понижается (повышается) до размерности второго (как правило, с помощью двукратной (однократной) замены плоскости проекции)

Второе правило Берикова – если в задаче участвуют примитивы «не соседних» размерностей, задача решается с помощью примитива-посредника промежуточной размерности.

Типовая задача № 2 (точка в системе плоскостей проекций)

Это интересно:

  • Проверка штрафов по номеру паспорта Проверка и оплата задолженности судебных приставов (ФССП) Контролируйте долги автоматически Мобильное приложение Отслеживайте штрафы, налоги и долги приставов в режиме реального времени Добавляйте в приложение несколько автомобилей и водителей Платите банковской картой или Apple […]
  • Ставка налога на прибыль за 2013 год в россии Ставки налогов в 2013 году в России. Настоящий текст, представляет собой краткую упрощенную справку по ставкам основных налогов, действующим в России в 2013 году. Текст не претендует на всеохватность и идеальную точность, за которыми следует обращаться напрямую к текстам законов о […]
  • Как вывезти ребенка за границу без разрешения Как вывезти ребенка за границу без согласия отца, местонахождение которого неизвестно? Если несовершеннолетний ребенок выезжает из РФ с одним из родителей (усыновителем, опекуном или попечителем), то согласие второго родителя на такой выезд, по общему правилу, не требуется (ст. 20 Закона […]
  • Налог на собственность пенсионеры Льготы пенсионерам в 2018 году: не надо платить налог на имущество Какие льготы имеют пенсионеры в 2018 году по оплате налога на имущество, читайте на этой странице. Налог на имущество физических лиц является местным налогом, зачисляется в местный бюджет по месту нахождения объекта […]
  • Индексация пенсий сроки Индексация пенсий Каждый год повышается уровень потребительских цен из-за инфляции, в связи с чем пенсии граждан также с каждым годом увеличиваются, то есть индексируются. При этом увеличение проводится на процент, соответствующий проценту инфляции в предыдущем году. Планово выплаты […]
  • Магер ве управление качеством учебное пособие Межвузовский Информационно-Образовательный Портал Лекция 1. Введение - читать поднобно Лекция 2. Современные проблемы управления качеством - читать поднобно Лекция 3. Эволюционное развитие подходов к менеджменту качества - читать поднобно Лекция 4. Содержание менеджмента […]
  • Управление персоналом учебное пособие Управление персоналом предприятия: Учебное пособие РАЗДЕЛ I. ОСНОВЫ УПРАВЛЕНИЯ ПЕРСОНАЛОМ ПРЕДПРИЯТИЯ ГЛАВА 1. РЫНОК ТРУДА И ПРЕДПРИЯТИЕ 1.1. Понятие рынка труда 1.2. Виды рынка труда 1.3. Механизм функционирования 1.4. Регулирование рынка труда 1.5. Роль предприятия в […]
  • Тв сигнал разрешение Разбираемся с разрешением современного телевидения Подробности Категория: услуги Опубликовано 11.05.2013 19:19 Автор: Зорыч Просмотров: 13243 Раньше было все просто - один стандарт телевещания на всю страну. Сейчас все сложнее: разные стандарты, разные форматы, разное […]
Все права защищены. 2018