Правило треугольника для матриц

Решение матриц.

Решение матриц – это понятие, которое обобщает все возможные операции, производимые с матрицами. Математическая матрица – таблица элементов. О такой таблице, где m строк и n столбцов, говорят, что это матрица имеет размерность m на n.

Общий вид матрицы:

Для решения матриц необходимо понимать, что такое матрица и знать основные ее параметры. Основные элементы матрицы:

Основные виды матриц:

  • Квадратная – такая матрица, где число строк = числу столбцов (m=n).
  • Нулевая – где все элементы матрицы = 0.
  • Транспонированная матрица — матрица В, которая была получена из исходной матрицы A путем замены строк на столбцы.
  • Единичная – все элементы главной диагонали = 1, все остальные = 0.
  • Обратная матрица — матрица, при умножении на которую исходная матрица даёт в результате единичную матрицу.

Матрица может быть симметричной относительно главной и побочной диагонали. Т.е., если а1221, а1331,….а2332…. аm-1nmn-1, то матрица симметрична относительно главной диагонали. Симметричными могут быть лишь квадратные матрицы.

Далее приведем основные методы решения матриц.

Методы решения матриц.

Почти все методы решения матрицы заключаются в нахождении ее определителя n-го порядка и большинство из них довольно громоздки. Чтобы найти определитель 2го и 3го порядка есть другие, более рациональные способы.

Нахождение определителей 2-го порядка.

Для вычисления определителя матрицы А 2го порядка, необходимо из произведения элементов главной диагонали вычесть произведение элементов побочной диагонали:

Методы нахождения определителей 3го порядка.

Ниже приведены правила для нахождения определителя 3го порядка.

Правило треугольника при решении матриц.

Упрощенно правило треугольника, как одного из методов решения матриц, можно изобразить таким образом:

Другими словами, произведение элементов в первом определителе, которые соединены прямыми, берется со знаком «+»; так же, для 2го определителя — соответствующие произведения берутся со знаком «-«, то есть по такой схеме:

Правило Саррюса при решении матриц.

При решении матриц правилом Саррюса, справа от определителя дописывают первые 2 столбца и произведения соответствующих элементов на главной диагонали и на диагоналях, которые ей параллельны, берут со знаком «+»; а произведения соответствующих элементов побочной диагонали и диагоналей, которые ей параллельны, со знаком «-«:

Разложение определителя по строке или столбцу при решении матриц.

Определитель равен сумме произведений элементов строки определителя на их алгебраические дополнения. Обычно выбирают ту строку/столбец, в которой/ом есть нули. Строку либо столбец, по которой/ому ведется разложение, будут обозначать стрелкой.

Приведение определителя к треугольному виду при решении матриц.

При решении матриц методом приведения определителя к треугольному виду, работают так: с помощью простейших преобразований над строками либо столбцами, определитель становится треугольного вида и тогда его значение, в соответствии со свойствами определителя, будет равно произведению элементов, которые стоят на главной диагонали.

Теорема Лапласа при решении матриц.

Решая матрицы по теореме Лапласа, необходимо знать непосредственно саму теорему. Теорема Лапласа: Пусть Δ – это определитель n-го порядка. Выбираем в нем любые k строк (либо столбцов), при условии k n – 1. В таком случае сумма произведений всех миноров k-го порядка, содержащихся в выбранных k строках (столбцах), на их алгебраические дополнения будет равна определителю.

Решение обратной матрицы.

Последовательность действий для решения обратной матрицы:

  1. Понять, квадратная ли данная матрица. В случае отрицательного ответа становится ясно, что обратной матрицы для нее не может быть.
  2. Понять, квадратная ли данная матрица. В случае отрицательного ответа становится ясно, что обратной матрицы для нее не может быть.
  3. Вычисляем алгебраические дополнения.
  4. Составляем союзную (взаимную, присоединённую) матрицу C.
  5. Составляем обратную матрицу из алгебраических дополнений: все элементы присоединённой матрицы C делим на определитель начальной матрицы. Итоговая матрица будет искомой обратной матрицей относительно заданной.
  6. Проверяем выполненную работу: умножаем матрицу начальную и полученную матрицы, результатом должна стать единичная матрица.

Решение систем матриц.

Для решения систем матриц наиболее часто используют метод Гаусса.

Метод Гаусса — это стандартный способ решения систем линейных алгебраических уравнений (СЛАУ) и он заключается в том, что последовательно исключаются переменные, т.е., при помощи элементарных изменений систему уравнений доводят до эквивалентной системы треугольного вида и из нее, последовательно, начиная с последних (по номеру), находят каждый элемент системы.

Метод Гаусса является самым универсальным и лучшим инструментом для нахождения решения матриц. Если у системы бесконечное множество решений или система является несовместимой, то ее нельзя решать по правилу Крамера и матричным методом.

Метод Гаусса подразумевает также прямой (приведение расширенной матрицы к ступенчатому виду, т.е. получение нулей под главной диагональю) и обратный (получение нулей над главной диагональю расширенной матрицы) ходы. Прямой ход и есть метод Гаусса, обратный — метод Гаусса-Жордана. Метод Гаусса-Жордана отличается от метода Гаусса лишь последовательностью исключения переменных.

Datalife Engine Demo

В этой статье мы познакомимся с очень важным понятием из раздела линейной алгебры, которое называется определитель.

Сразу хотелось бы отметить важный момент: понятие определитель действительно только для квадратных матриц (число строк = числу столбцов), у других матриц его нет.

4. А теперь рассмотрим примеры с действительными числами:

Правило треугольника — это способ вычисления определителя матрицы, который предполагает его нахождение по следующей схеме:

Как вы уже поняли, метод был назван правилом треугольника в следствии того, что перемножаемые элементы матрицы образуют своеобразные треугольники.

Для того, чтобы понять это лучше, разберём такой пример:

А теперь рассмотрим вычисление определителя матрицы с действительными числами правилом треугольника:

Для закрепления пройденного материала, решим ещё один практический пример:

3. Определитель транспонированной матрицы равен определителю исходной матрицы.

4. Определитель равен нулю, если элементы одной строки равны соответствующим элементам другой строки (для столбцов также). Самый простой пример этого свойства определителей:

5. Определитель равен нулю, если его 2 строки пропорциональны (также и для столбцов). Пример (1 и 2 строка пропорциональны):

6. Общий сомножитель строки (столбца) может быть вынесен за знак определителя.

7) Определитель не изменится, если к элементам какой-либо строки (столбца) прибавить соответствующие элементы другой строки (столбца), умноженные на одну и ту же величину. Рассмотрим это на примере:

Определитель матрицы: алгоритм и примеры вычисления определителя матрицы

Определитель (детерминант) матрицы — некоторое число, с которым можно сопоставить любую квадратную матрицу А = ( a i j ) n × n .

|А|, ∆ , det A — символы, которыми обозначают определитель матрицы.

Способ вычисления определителя выбирают в зависимости от порядка матрицы.

Определитель матрицы 2-го порядка вычисляют по формуле:

d e t A = 1 — 2 3 1 = 1 × 1 — 3 × ( — 2 ) = 1 + 6 = 7

Определитель матрицы 3-го порядка: правило треугольника

Чтобы найти определитель матрицы 3-го порядка, необходимо одно из правил:

  • правило треугольника;
  • правило Саррюса.

Как найти определитель матрицы 3-го порядка по методу треугольника?

а 11 а 12 а 13 а 21 а 22 а 23 а 31 а 32 а 33 = a 11 × a 22 × a 33 + a 31 × a 12 × a 23 + a 21 × a 32 × a 13 — a 31 × a 22 × a 13 — a 21 × a 12 × a 33 — a 11 × a 23 × a 32

А = 1 3 4 0 2 1 1 5 — 1

d e t A = 1 3 4 0 2 1 1 5 — 1 = 1 × 2 × ( — 2 ) + 1 × 3 × 1 + 4 × 0 × 5 — 1 × 2 × 4 — 0 × 3 × ( — 1 ) — 5 × 1 × 1 = ( — 2 ) + 3 + 0 — 8 — 0 — 5 = — 12

Правило Саррюса

Чтобы вычислить определитель по методу Саррюса, необходимо учесть некоторые условия и выполнить следующие действия:

  • дописать слева от определителя два первых столбца;
  • перемножить элементы, которые расположены на главной диагонали и параллельных ей диагоналях, взяв произведения со знаком «+»;
  • перемножить элементы, которые расположены на побочных диагоналях и параллельных им, взяв произведения со знаком «—».

а 11 а 12 а 13 а 21 а 22 а 23 а 31 а 32 а 33 = a 11 × a 22 × a 33 + a 31 × a 12 × a 23 + a 21 × a 32 × a 13 — a 31 × a 22 × a 13 — a 21 × a 12 × a 33 — a 11 × a 23 × a 32

А = 1 3 4 0 2 1 — 2 5 — 1 1 3 0 2 — 2 5 = 1 × 2 × ( — 1 ) + 3 × 1 × ( — 2 ) + 4 × 0 × 5 — 4 × 2 × ( — 2 ) — 1 × 1 × 5 — 3 × 0 × ( — 1 ) = — 2 — 6 + 0 + 16 — 5 — 0 = 3

Методы разложения по элементам строки и столбца

Чтобы вычислить определитель матрицу 4-го порядка, можно воспользоваться одним из 2-х способов:

  • разложением по элементам строки;
  • разложением по элементам столбца.

Представленные способы определяют вычисление определителя n как вычисление определителя порядка n-1 за счет представления определителя суммой произведений элементов строки (столбца) на их алгебраические дополнения.

Разложение матрицы по элементам строки:

d e t A = a i 1 × A i 1 + a i 2 × A i 2 + . . . + а i n × А i n

Разложение матрицы по элементам столбца:

d e t A = а 1 i × А 1 i + а 2 i × А 2 i + . . . + а n i × А n i

Если раскладывать матрицу по элементам строки (столбца), необходимо выбирать строку (столбец), в которой(-ом) есть нули.

А = 0 1 — 1 3 2 1 0 0 — 2 4 5 1 3 2 1 0

  • раскладываем по 2-ой строке:

А = 0 1 — 1 3 2 1 0 0 — 2 4 5 1 3 2 1 0 = 2 × ( — 1 ) 3 × 1 — 1 3 — 2 5 1 3 1 0 = — 2 × 1 — 1 3 4 5 1 2 1 0 + 1 × 0 — 1 3 — 2 5 1 3 1 0

  • раскладываем по 4-му столбцу:

А = 0 1 — 1 3 2 1 0 0 — 2 4 5 1 3 2 1 0 = 3 × ( — 1 ) 5 × 2 1 0 — 2 4 5 3 2 1 + 1 × ( — 1 ) 7 × 0 1 — 1 2 1 0 3 2 1 = — 3 × 2 1 0 — 2 4 5 3 2 1 — 1 × 0 1 — 1 2 1 0 3 2 1

Свойства определителя

  • если преобразовывать столбцы или строки незначительными действиями, то это не влияет на значение определителя;
  • если поменять местами строки и столбцы, то знак поменяется на противоположный;
  • определитель треугольной матрицы представляет собой произведение элементов, которые расположены на главной диагонали.

Пример 6

А = 1 3 4 0 2 1 0 0 5

d e t А = 1 3 4 0 2 1 0 0 5 = 1 × 5 × 2 = 10

Определитель матрицы, который содержит нулевой столбец, равняется нулю.

Вычисление определителей

Методы нахождения определителей

  1. Определитель матрицы разложением по строкам и столбцам через миноры.
  2. Определитель матрицы методом треугольников
  3. Определитель матрицы методом понижения порядка
  4. Определитель методом приведения к треугольному виду (методом Гаусса)
  5. Определитель матрицы методом декомпозиции

Свойство определителей

  1. При транспонировании матрицы её определитель не меняется.
  2. Если поменять местами две строки или два столбца определителя, то определитель изменит знак, а по абсолютной величине не изменится.
  3. Пусть C = AB где A и B квадратные матрицы. Тогда detC = detA ∙ detB .
  4. Определитель с двумя одинаковыми строками или с двумя одинаковыми столбцами равен 0. Если все элементы некоторой строки или столбца равны нулю, то и сам определитель равен нулю.
  5. Определитель с двумя пропорциональными строками или столбцами равен 0.
  6. Определитель треугольной матрицы равен произведению диагональных элементов. Определитель диагональной матрицы равен произведению элементов стоящих на главной диагонали.
  7. Если все элементы строки (столбца) умножить на одно и то же число, то определитель умножится на это число.
  8. Если каждый элемент некоторой строки (столбца) определителя представлен в виде суммы двух слагаемых, то определитель равен сумме двух определителей, у которых все строки (столбцы) кроме данной, прежние, а в данной строке (столбце) в первом определителе стоят первые, а во втором — вторые слагаемые.
  9. Теорема Якоби: Если к элементам некоторого столбца определителя прибавить соответствующие элементы другого столбца, умноженные на произвольный множитель λ, то величина определителя не изменится.

Таким образом, определитель матрицы остается без изменения, если:

  • транспонировать матрицу;
  • прибавить к какой-либо строке другую строку, умноженную на любое число.

Задание 1. Вычислить определитель, разлагая его по строке или столбцу.
Решение:xml:xls
Пример 1:xml:xls

Задание 2. Вычислить определитель двумя способами: а) по правилу «треугольников»; б) разложением по строке.

Решение.
а) Слагаемые, входящие в со знаком «минус», строятся таким же образом относительно побочной диагонали.

Вычисление определителя разложением по столбцу

Найдем определитель, использовав разложение по столбцам:
Минор для (1,1):
Вычеркиваем из матрицы 1-ю строку и 1-й столбец.

Найдем определитель для этого минора.
1,1 = (2 • 1-(-1 • (-1))) = 1
Минор для (2,1):
Вычеркиваем из матрицы 2-ю строку и 1-й столбец.

Найдем определитель для этого минора.
2,1 = (-1 • 1-(-1 • 0)) = -1
Минор для (3,1):
Вычеркиваем из матрицы 3-ю строку и 1-й столбец.

Задание №2. Вычислить определитель четвертого порядка.
Решение.
Исходную матрицу запишем в виде:

Найдем определитель, использовав разложение по столбцам:
Вычисляем минор для элемента, находящегося на пересечении первого столбца и первой строки (1,1):
Вычеркиваем из матрицы 1-ю строку и 1-й столбец.

Найдем определитель для этого минора.
1,1 = 0 • (1 • 0-1 • 0)-1 • (1 • 0-1 • 1)+1 • (1 • 0-1 • 1) = 0
Минор для (2,1):
Вычеркиваем из матрицы 2-ю строку и 1-й столбец.

Найдем определитель для этого минора.
2,1 = 1 • (1 • 0-1 • 0)-1 • (1 • 0-1 • 1)+1 • (1 • 0-1 • 1) = 0
Вычисляем минор для элемента, находящегося на пересечении первого столбца и третьей строки (3,1):
Вычеркиваем из матрицы 3-ю строку и 1-й столбец.

Найдем определитель для этого минора.
3,1 = 1 • (1 • 0-1 • 1)-0 • (1 • 0-1 • 1)+1 • (1 • 1-1 • 1) = -1
Минор для (4,1):
Вычеркиваем из матрицы 4-ю строку и 1-й столбец.

Примеры:
B = a1 1 •a2 2 •a3 3 — a1 1 •a3 2 •a2 3 — a1 2 •a2 1 •a3 3 + a1 2 •a3 1 •a2 3 + a1 3 •a2 1 •a3 2 — a1 3 •a3 1 •a2 2
Три слагаемых, входящих в сумму со знаком «плюс», находятся следующим образом: одно слагаемое состоит из произведения элементов, расположенных на главной диагонали, два других – произведения элементов, лежащих на параллели к этой диагонали с добавлением третьего множителя из противоположного угла.
Слагаемые, входящие в со знаком «минус», строятся таким же образом относительно побочной диагонали.

Это интересно:

  • Перечень документов на субсидию на тепло казань Как получить субсидию на оплату услуг за тепло? В связи с отменой перекрестного субсидирования в теплоэнергетике с 1 сентября в Татарстане введена целевая компенсация на сглаживание роста платы за жилищно-коммунальные услуги. Программа выплаты субсидий рассчитана на 3 года. Правительство […]
  • Деньги под залог в бресте Автоломбард: кредит под залог авто в Бресте Смотреть детальные условия на автоломбард в г. Брест В наши дни очень пользуются спросом кредиты. Как известно, есть правила выдачи денег в долг, которые нужно соблюдать, одно из них – закладывать ценный металлы, камни, квартиры, технику, […]
  • Транспортный налог ип в 2014 году Какой платит транспортный налог ИП В 2014 году произошли некоторые изменения относительно транспортного налога для ИП, в частности, они коснулись автомобилей, которые не дешевле 3-х млн руб. В данном случае констатируется тот факт, что произошло увеличение ставки налога от 10 до 300% в […]
  • Увольнение последний день 14 дней Последний день отработки - выходной. Переносится ли отработка на следующий день? Всё правильно, так как последний день отработки выпадает на не рабочий день, то днём окончания срока отработки будет являться следующий за ним работчий день. Да нужно отрабатывать. Ничего в вашем случае […]
  • Закон приобретает юридическую силу с момента § 5. Действие правовых актов управления 1. Правовые акты управления только тогда выполняют свою служебную роль, когда они действуют, т.е. вызывают те юридические последствия, ради достижения которых издаются (принимаются) исполнительными органами (должностными лицами). Имеется в виду […]
  • Перечень документов для пособия малоимущим семьям Какие пособия положены малоимущим семьям Каждая малоимущая семья, которая проживает на территории Российской Федерации, имеет полное право на получение определенной финансовой помощи со стороны государства. Но мало кто из таких семей знает о том, какие именно пособия и субсидии они имеют […]
  • Льготы учителям при уходе на пенсию Начисление льготной пенсии для учителей, воспитателей и работников педагогических учреждений. Для того, чтобы знать порядок правильного решения вопросов, касающихся льготного законодательства, необходимо знать не только юридическую базу, но и техническую. Другими словами, необходимо не […]
  • Подоходный налог был заменен История НДФЛ в России За свою историю налог на доходы граждан пережил множество изменений, но практически всегда высокие доходы облагались повышенным налогом, а минимально необходимые для жизни заработки налогом не облагались вообще. Но с момента вступления в силу части второй НК РФ в […]

Author: admin