Советник

Юридические услуги по корпоративному праву

Закон гука имеет вид

Сопромат .in.ua

изучаем сопротивление материалов

Закон Гука

Многочисленные экспериментальные наблюдения за поведением деформируемых тел показывают, что в определенных диапазонах перемещения точек тела пропорциональны действующим на него нагрузкам. Указанная закономерность была впервые сформулирована в 1660 году и опубликована в 1678 г. в сочинении «De potentia restitutiva» 1 английским учёным Робертом Гуком (англ. Robert Hooke ) и в его честь носит название “Закон Гука”. “ As the extension, so the force. “

Закон Гука записывается для малых напряжений и деформаций и имеет вид простой пропорциональности. Для тонкого растяжимого стержня закон Гука гласит “ перемещения прямо пропорциональны нагрузкам “ и имеет вид: $$F=k\Delta$$ Здесь F сила натяжения стержня, [math]\Delta[/math]— его удлинение, а k называется коэффициентом упругости или жёсткостью.

Очевидно, что коэффициент упругости зависит как от свойств материала, так и от размеров стержня. Полезно выделить зависимость от размеров стержня (площади поперечного сечения A и длины L ) явно, записав коэффициент упругости как [math]k=\frac[/math]. Величина E – это коэффициент пропорциональности, названным модулем Юнга и зависит только от свойств материала. Полезно теперь ввести относительное удлинение ε=∆l/L и нормальное напряжение в поперечном сечении σ=F/A. В этих обозначениях закон Гука записывается как $$\sigma=E\varepsilon$$ . Величину, обратную жёсткости, называют податливостью.

На практике часто необходимо найти удлинение стержня под действием растягивающих или сжимающих нагрузок. Подставим в формулу σ=Eε выражения σ=N/A и ε=∆l/L. Тогда $$\Delta l=\frac$$
Эта формула справедлива для случая действия одной сосредоточенной силы. Если на стержень действует несколько сил – то стержень разбивается на несколько участков (от силы до силы) и полное удлинение равно сумме удлинений каждого участка в отдельности. $$\Delta l = \sum_^\frac$$

Закон Гука не является точным законом. Для стали отклонения от пропорциональности между σ и ε незначительны, тогда как чугун или резина явно этому закону не подчиняются. Для них ε = φ(σ), причем φ(σ) может быть аппроксимирована линейной функцией лишь в самом грубом приближении.

Закон гука имеет вид

1.12. Сила упругости. Закон Гука

При деформации тела возникает сила, которая стремится восстановить прежние размеры и форму тела. Эта сила возникает вследствие электромагнитного взаимодействия между атомами и молекулами вещества. Ее называют силой упругости .

Простейшим видом деформации являются деформации растяжения и сжатия (рис. 1.12.1).

Закон Гука может быть обобщен и на случай более сложных деформаций. Например, при деформации изгиба упругая сила пропорциональна прогибу стержня, концы которого лежат на двух опорах (рис. 1.12.2).

Упругую силу действующую на тело со стороны опоры (или подвеса), называют силой реакции опоры . При соприкосновении тел сила реакции опоры направлена перпендикулярно поверхности соприкосновения. Поэтому ее часто называют силой нормального давления . Если тело лежит на горизонтальном неподвижном столе, сила реакции опоры направлена вертикально вверх и уравновешивает силу тяжести: Сила с которой тело действует на стол, называется весом тела.

В технике часто применяются спиралеобразные пружины (рис. 1.12.3). При растяжении или сжатии пружин возникают упругие силы, которые также подчиняются закону Гука. Коэффициент k называют жесткостью пружины . В пределах применимости закона Гука пружины способны сильно изменять свою длину. Поэтому их часто используют для измерения сил. Пружину, растяжение которой проградуировано в единицах силы, называют динамометром . Следует иметь в виду, что при растяжении или сжатии пружины в ее витках возникают сложные деформации кручения и изгиба.

В отличие от пружин и некоторых эластичных материалов (резина) деформация растяжения или сжатия упругих стержней (или проволок) подчиняются линейному закону Гука в очень узких пределах. Для металлов относительная деформация ε = x / l не должна превышать 1 % . При больших деформациях возникают необратимые явления (текучесть) и разрушение материала.

Закон Гука

Определение и формула закона Гука

Формулировка этого закона выглядит следующим образом: сила упругости, которая появляется в момент деформации тела, пропорциональна удлинению тела и направлена противоположно движению частиц этого тела относительно других частиц при деформации.

Математическая запись закона выглядит так:

Рис. 1. Формула закона Гука

где Fупр – соответственно сила упругости, x – удлинение тела (расстояние, на которое изменяется исходная длина тела), а k – коэффициент пропорциональности, называемый жесткостью тела. Сила измеряется в Ньютонах, а удлинение тела – в метрах.

Для раскрытия физического смысла жесткости, нужно в формулу для закона Гука подставить единицу, в которой измеряется удлинение – 1 м, заранее получив выражение для k.

Рис. 2. Формула жесткости тела

Эта формула показывает, что жесткость тела численно равна силе упругости, которая возникает в теле (пружине), когда оно деформируется на 1 м. Известно, что жесткость пружины зависит от ее формы, размера и материала, из которого произведено данное тело.

Сила упругости

Теперь, когда известно, какая формула выражает закон Гука, необходимо разобраться в его основной величине. Основной величиной является сила упругости. Она появляется в определенный момент, когда тело начинает деформироваться, например, когда пружина сжимается или растягивается. Она направлена в обратную сторону от силы тяжести. Когда сила упругости и сила тяжести, действующие на тело, становятся равными, опора и тело останавливаются.

Деформация – это необратимые изменения, происходящие с размерами тела и его формой. Они связанны с перемещением частиц относительно друг друга. Если человек сядет в мягкое кресло, то с креслом произойдет деформация, то есть изменятся его характеристики. Она бывает разных типов: изгиб, растяжение, сжатие, сдвиг, кручение.

Так как сила упругости относится по своему происхождению к электромагнитным силам, следует знать, что возникает она из-за того, что молекулы и атомы – наименьшие частицы, из которых состоят все тела, притягиваются друг другу и отталкиваются друг от друга. Если расстояние между частицами очень мало, значит, на них влияет сила отталкивания. Если же это расстояние увеличить, то на них будет действовать сила притяжения. Таким образом, разность сил притяжения и сил отталкивания проявляется в силах упругости.

Сила упругости включает в себя силу реакции опоры и вес тела. Сила реакции представляет особый интерес. Это такая сила, которая действует на тело, когда его кладут на какую-либо поверхность. Если же тело подвешено, то силу, действующую на него, называют, силой натяжения нити.

Особенности сил упругости

Как мы уже выяснили, сила упругости возникает при деформации, и направлена она на восстановление первоначальных форм и размеров строго перпендикулярно к деформируемой поверхности. У сил упругости также есть ряд особенностей.

  • они возникают во время деформации;
  • они появляются у двух деформируемых тел одновременно;
  • они находятся перпендикулярно поверхности, по отношению к которой тело деформируется.
  • они противоположны по направлению смещению частиц тела.

Применение закона на практике

Закон Гука применяется как в технических и высокотехнологичных устройствах, так и в самой природе. Например, силы упругости встречаются в часовых механизмах, в амортизаторах на транспорте, в канатах, резинках и даже в человеческих костях. Принцип закона Гука лежит в основе динамометра – прибора, с помощью которого измеряют силу.

Рис. 3. Динамометр

Что мы узнали?

Статья подробно знакомит учащихся с материалом о том, как формулируется обобщенный закон Гука, который изучают в 7 классе, и его основной величине – силе упругости.

закон Гука

Министерство образования АР Крым

Таврический Национальный Университет им. Вернадского

Исследование физического закона

Выполнил: студент 1 курса

физического факультета гр. Ф-111

Связь между какими явлениями или величинами выражает закон.

Математическое выражение закона.

Каким образом был открыт закон: на основе опытных данных или теоретически.

Опытные факты на основе которого был сформулирован закон.

Опыты, подтверждающие справедливость закона, сформулированного на основе теории.

Примеры использования закона и учета действия закона на практике.

Связь между какими явлениями или величинами выражает закон:

Закон Гука связывает такие явления, как напряжение и деформацию твердого тела, модуль силы упругости и удлинение. Модуль силы упругости, возникающей при деформации тела, пропорционален его удлинению. Удлинением называется характеристика деформативности материала, оцениваемая по увеличению длины образца из этого материала при растяжении. Си́ла упру́гости — сила, возникающая при деформации тела и противодействующая этой деформации. Напряжение — это мера внутренних сил, возникающих в деформируемом теле под влиянием внешних воздействий. Деформа́ция — изменение взаимного положения частиц тела, связанное с их перемещением друг относительно друга. Эти понятия связаны так называемым коэффициентом жесткости. Он зависит от упругих свойств материала и размеров тела.

Зако́н Гу́ка — уравнение теории упругости, связывающее напряжение и деформацию упругой среды.

Формулировка закона — сила упругости прямо пропорциональна деформации.

Математическое выражение закона:

Для тонкого растяжимого стержня закон Гука имеет вид:

Здесь F сила натяжения стержня, Δl — его удлинение(сжатие), а k называется коэффициентом упругости (или жёсткостью). Минус в уравнении указывает на то, что сила натяжения всегда направлена в сторону, противоположную деформации.

Если ввести относительное удлинение

инормальное напряжение в поперечном сечении

то закон Гука запишется так

В такой форме он справедлив для любых малых объёмов вещества.

В общем случае напряжения и деформации являются тензорами второго ранга в трёхмерном пространстве (имеют по 9 компонент). Связывающий их тензор упругих постоянных является тензором четвёртого ранга Cijkl и содержит 81 коэффициент. Вследствие симметрии тензора Cijkl, а также тензоров напряжений и деформаций, независимыми являются только 21 постоянная. Закон Гука выглядит следующим образом:

где σij — тензор напряжений, —тензор деформаций. Для изотропного материала тензор Cijkl содержит только два независимых коэффициента.

Каким образом был открыт закон: на основе опытных данных или теоретически:

Закон был открыт в 1660 году английским учёным Робертом Гуком (Хуком) на основе наблюдений и экспериментов. Открытие, как утверждал Гук в своём сочинении «De potentia restitutiva», опубликованном в 1678, сделано им за 18 лет до этого времени, а в 1676 было помещено в другой его книге под видом анаграммы «ceiiinosssttuv», означающей «Ut tensio sic vis». По объяснению автора, вышесказанный закон пропорциональности применяется не только к металлам, но и к дереву, камням, рогу, костям, стеклу, шёлку, волосу и проч.

Опытные факты на основе которых был сформулирован закон:

История об этом умалчивает..

Опыты, подтверждающие справедливость закона, сформулированного на основе теории:

Закон сформулирован на основе опытных данных. Действительно, при растягивании тела (проволоки) с определенным коэффициентом жесткости k на расстояние Δl, то их произведение будет равно по модулю силе, растягивающей тело (проволоку). Такое соотношение будет выполняться, однако, не для всех деформаций, а для небольших. При больших деформациях закон Гука перестает действовать, тело разрушается.

Примеры использования закона и учета действия закона на практике:

Как следует из закона Гука, по удлинению пружины можно судить о силе, действующей на нее. Этот факт используется для измерения сил с помощью динамометра – пружины с линейной шкалой, проградуированной на разные значения сил.

1. Интернет-ресурсы: — сайт Википедия (http://ru.wikipedia.org/wiki/%D0%97%D0%B0%D0%BA%D0%BE%D0%BD_%D0%93%D1%83%D0%BA%D0%B0).

2. учебник по физике Перышкин А.В. 9 класс

3. учебник по физике В.А. Касьянов 10 класс

Закон Гука

Представьте, что вы взялись за один конец упругой пружины, другой конец которой закреплен неподвижно, и принялись ее растягивать или сжимать. Чем больше вы сдавливаете пружину или растягиваете ее, тем сильнее она этому сопротивляется. Именно по такому принципу устроены любые пружинные весы — будь то безмен (в нем пружина растягивается) или платформенные пружинные весы (пружина сжимается). В любом случае пружина противодействует деформации под воздействием веса груза, и сила гравитационного притяжения взвешиваемой массы к Земле уравновешивается силой упругости пружины. Благодаря этому мы можем измерять массу взвешиваемого объекта по отклонению конца пружины от ее нормального положения.

Первое по-настоящему научное исследование процесса упругого растяжения и сжатия вещества предпринял Роберт Гук. Первоначально в своем опыте он использовал даже не пружину, а струну, измеряя, насколько она удлиняется под воздействием различных сил, приложенных к одному ее концу, в то время как другой конец жестко закреплен. Ему удалось выяснить, что до определенного предела струна растягивается строго пропорционально величине приложенной силы, пока не достигает предела упругого растяжения (эластичности) и не начинает подвергаться необратимой нелинейной деформации (см. ниже). В виде уравнения закон Гука записывается в следующей форме:

где F — сила упругого сопротивления струны, x — линейное растяжение или сжатие, а k — так называемый коэффициент упругости. Чем выше k, тем жестче струна и тем тяжелее она поддается растяжению или сжатию. Знак минус в формуле указывает на то, что струна противодействует деформации: при растяжении стремится укоротиться, а при сжатии — распрямиться.

Закон Гука лег в основу раздела механики, который называется теорией упругости. Выяснилось, что он имеет гораздо более широкие применения, поскольку атомы в твердом теле ведут себя так, будто соединены между собой струнами, то есть упруго закреплены в объемной кристаллической решетке. Таким образом, при незначительной упругой деформации эластичного материала действующие силы также описываются законом Гука, но в несколько более сложной форме. В теории упругости закон Гука принимает следующий вид:

где σмеханическое напряжение (удельная сила, приложенная к поперечной площади сечения тела), η — относительное удлинение или сжатие струны, а Е — так называемый модуль Юнга, или модуль упругости, играющий ту же роль, что коэффициент упругости k. Он зависит от свойств материала и определяет, насколько растянется или сожмется тело при упругой деформации под воздействием единичного механического напряжения.

Вообще-то, Томас Юнг гораздо более известен в науке как один из сторонников теории волновой природы света, разработавший убедительный опыт с расщеплением светового луча на два пучка для ее подтверждения (см. Принцип дополнительности и Интерференция), после чего сомнений в верности волновой теории света ни у кого не осталось (хотя до конца облечь свои идеи в строгую математическую форму Юнг так и не сумел). Вообще говоря, модуль Юнга представляет собой одну из трех величин, позволяющих описать реакцию твердого материала на приложенную к нему внешнюю силу. Вторая — это модуль смещения (описывает, насколько вещество смещается под воздействием силы, приложенной по касательной к поверхности), а третья — соотношение Пуассона (описывает, насколько твердое тело истончается при растяжении). Последнее названо в честь французского математика Симеона Дени Пуассона (Siméon-Denis Poisson, 1781–1840) .

Конечно, закон Гука даже в усовершенствованной Юнгом форме не описывает всего, что происходит с твердым веществом под воздействием внешних сил. Представьте себе резиновую ленту. Если растянуть ее не слишком сильно, со стороны резиновой ленты возникнет возвратная сила упругого натяжения, и как только вы ее отпустите, она тут же соберется и примет прежнюю форму. Если растягивать резиновую ленту и дальше, то рано или поздно она утратит свою эластичность, и вы почувствуете, что сила сопротивления растяжению ослабла. Значит, вы перешли так называемый предел эластичности материала. Если тянуть резину и дальше, через какое-то время она вообще порвется, и сопротивление исчезнет полностью — это вы перешли через так называемую точку разрыва.

Иными словами, закон Гука действует только при относительно небольших сжатиях или растяжениях. Пока вещество сохраняет свои упругие свойства, силы деформации прямо пропорциональны ее величине, и вы имеете дело с линейной системой — каждому равному приращению приложенной силы соответствует равное приращение деформации. Стоит перетянуть резину за предел эластичности, и межатомные связи-пружины внутри вещества сначала ослабевают, а затем рвутся — и простое линейное уравнение Гука перестает описывать происходящее. В таком случае принято говорить, что система стала нелинейной. Сегодня исследование нелинейных систем и процессов является одним из основных направлений развития физики.

Английский физик. Родился во Фрешуотере (Freshwater) на острове Уайт в семье священника, окончил Оксфордский университет. Еще учась в университете, работал ассистентом в лаборатории Роберта Бойля, помогая последнему строить вакуумный насос для установки, на которой был открыт закон Бойля—Мариотта. Будучи современником Исаака Ньютона, вместе с ним активно участвовал в работе Королевского общества, а в 1677 году занял там пост ученого секретаря. Как и многие другие ученые того времени, Роберт Гук интересовался самыми разными областями естественных наук и внес вклад в развитие многих из них. В своей монографии «Микрография» (Micrographia) он опубликовал множество зарисовок микроскопического строения живых тканей и других биологических образцов и впервые ввел современное понятие «живая клетка». В геологии он первым осознал важность геологических пластов и первым в истории занялся научным изучением природных катаклизмов (см. Униформизм). Он же одним из первых высказал гипотезу, что сила гравитационного притяжения между телами убывает пропорционально квадрату расстояния между ними, а это ключевой компонент Закона всемирного тяготения Ньютона, и двое соотечественников и современников так до конца жизни и оспаривали друг у друга право называться его первооткрывателем. Наконец, Гук разработал и собственноручно построил целый ряд важных научно-измерительных приборов — и многие склонны видеть в этом его главный вклад в развитие науки. Он, в частности, первым додумался помещать перекрестье из двух тонких нитей в окуляр микроскопа, первым предложил принять температуру замерзания воды за ноль температурной шкалы, а также изобрел универсальный шарнир (карданное сочленение).

Это интересно:

  • Википедия периодический закон ПЕРИОДИЧЕСКИЙ ЗАКОН МЕНДЕЛЕЕВА Научно-технический энциклопедический словарь . Смотреть что такое "ПЕРИОДИЧЕСКИЙ ЗАКОН МЕНДЕЛЕЕВА" в других словарях: ПЕРИОДИЧЕСКИЙ ЗАКОН МЕНДЕЛЕЕВА — см. Периодическая система элементов Менделеева … Большой Энциклопедический словарь периодический закон […]
  • Ненормальный закон ненормальный закон Большой англо-русский и русско-английский словарь . 2001 . Смотреть что такое "ненормальный закон" в других словарях: ЗЛО — [греч. ἡ κακία, τὸ κακόν, πονηρός, τὸ αἰσχρόν, τὸ φαῦλον; лат. malum], характеристика падшего мира, связанная со способностью разумных существ, […]
  • Разрешение файла dll File Extension DLL – Расширение файла DLL DLL файлы являются важной частью операционной системы Windows. DLL расшифровывается как Dynamic Link Library (от англ. «динамически подключаемая библиотека»). Это файл, который содержит код, ответственный за работу важных программ и приложений в […]
  • Свойства пласта коллектора Коллекторские свойства горных пород КОЛЛЕКТОРСКИЕ СВОЙСТВА ГОРНЫХ ПОРОД (а. reservoir properties of rocks; н. Speichervermogen der Gesteine; ф. caracteristiques de reservoir des roches; и. propiedades de reservorio de rocas) — способность горных пород пропускать через себя жидкие и […]
  • Апостиль на нотариуса Апостиль (apostille) АПОСТИЛЕМ является упрощенная форма легализации официальных документов, выполненная в виде квадратного штампа, проставляемого государственным органом на документе, выданном на территории этого государства, вступившего в Гаагскую конвенцию от 05 октября 1961 […]
  • Зразки заяв до європейського суду з прав людини Зразок заяви до Європейського Суду з Прав Людини ЄВРОПЕЙСЬКИЙ СУД З ПРАВ ЛЮДИНИ Conseil de l’Europe – Council of Europe Strasbourg, France – Страсбург, Франція а також до Статей 45 та 47 Процедури Суду (з 01 січня 2016 року внесено зміни) Див. оновлений формуляр заяви внизу (Відомості […]
  • Правила перевозки ребенка в автобусе пдд 2018 С 1 июля будут изменены требования к возрасту автобусов для перевозки детей в Москве и МО ГИБДД напомнила о скорых изменениях по перевозке детей на старых автобусах На официальном сайте ГИБДД города Москвы было опубликовано напоминание, что с 27 апреля 2018 года в Постановление […]
  • Правило мягкий знак на конце слов после шипящих Мягкий знак после шипящих на конце наречий Этот видеоурок доступен по абонементу У вас уже есть абонемент? Войти На данном уроке подробно рассмотрено правописание мягкого знака после шипящих на конце наречий, а также дано повторение уже изученных орфограмм. Мягкий знак на конце наречий […]
Все права защищены. 2018