Законы рентгеновского излучения

ЛЕКЦИЯ 32 РЕНТГЕНОВСКОЕ ИЗЛУЧЕНИЕ

1. Источники рентгеновского излучения.

2. Тормозное рентгеновское излучение.

3. Характеристическое рентгеновское излучение. Закон Мозли.

4. Взаимодействие рентгеновского излучения с веществом. Закон ослабления.

5. Физические основы использования рентгеновского излучения в медицине.

6. Основные понятия и формулы.

Рентгеновское излучение — электромагнитные волны с длиной волны от 100 до 10 -3 нм. На шкале электромагнитных волн рентгеновское излучение занимает область между УФ-излучением и γ-излучением. Рентгеновское излучение (Х-лучи) открыты в 1895 г. К. Рентгеном, который в 1901 г. стал первым Нобелевским лауреатом по физике.

32.1. Источники рентгеновского излучения

Естественными источниками рентгеновского излучения являются некоторые радиоактивные изотопы (например, 55 Fe). Искусственными источниками мощного рентгеновского излучения являются рентгеновские трубки (рис. 32.1).

Рис. 32.1. Устройство рентгеновской трубки

Рентгеновская трубка представляет собой вакуумированную стеклянную колбу с двумя электродами: анодом А и катодом К, между которыми создается высокое напряжение U (1-500 кВ). Катод представляет собой спираль, нагреваемую электрическим током. Электроны, испущенные нагретым катодом (термоэлектронная эмиссия), разгоняются электрическим полем до больших скоростей (для этого и нужно высокое напряжение) и попадают на анод трубки. При взаимодействии этих электронов с веществом анода возникают два вида рентгеновского излучения: тормозное и характеристическое.

Рабочая поверхность анода расположена под некоторым углом к направлению электронного пучка, для того чтобы создать требуемое направление рентгеновских лучей.

В рентгеновское излучение превращается примерно 1 % кинетической энергии электронов. Остальная часть энергии выделяется в виде тепла. Поэтому рабочая поверхность анода выполняется из тугоплавкого материала.

32.2. Тормозное рентгеновское излучение

Электрон, движущийся в некоторой среде, теряет свою скорость. При этом возникает отрицательное ускорение. Согласно теории Максвелла, любое ускоренное движение заряженной частицы сопровождается электромагнитным излучением. Излучение, возникающее при торможении электрона в веществе анода, называют тормозным рентгеновским излучением.

Свойства тормозного излучения определяются следующими факторами.

1. Излучение испускается отдельными квантами, энергии которых связаны с частотой формулой (26.10)

где ν — частота, λ — длина волны.

2. Все электроны, достигающие анода, имеют одинаковую кинетическую энергию, равную работе электрического поля между анодом и катодом:

где е — заряд электрона, U — ускоряющее напряжение.

3. Кинетическая энергия электрона частично передается веществу и идет на его нагревание (Q), а частично расходуется на создание рентгеновского кванта:

4. Соотношение между Q и hv случайно.

В силу последнего свойства (4) кванты, порожденные различными электронами, имеют различные частоты и длины волн. Поэтому спектр тормозного рентгеновского излучения является сплошным. Типичный вид спектральной плотности потока рентгеновского излучения (Φλ = άΦ/άλ) показан на рис. 32.2.

Рис. 32.2. Спектр тормозного рентгеновского излучения

Со стороны длинных волн спектр ограничен длиной волны 100 нм, которая является границей рентгеновского излучения. Со стороны коротких волн спектр ограничен длиной волны λmin. Согласно формуле (32.2) минимальной длине волны соответствует случай Q = 0 (кинетическая энергия электрона полностью переходит в энергию кванта):

Расчеты показывают, что поток (Φ) тормозного рентгеновского излучения прямо пропорционален квадрату напряжения U между

анодом и катодом, силе тока I в трубке и атомному номеру Z вещества анода:

Спектры тормозного рентгеновского излучения при различных напряжениях, различных температурах катода и различных веществах анода показаны на рис. 32.3.

Рис. 32.3. Спектр тормозного рентгеновского излучения (Φλ):

а — при различном напряжении U в трубке; б — при различной температуре T

катода; в — при различных веществах анода отличающихся параметром Z

При увеличении анодного напряжения значение λmin смещается в сторону коротких длин волн. Одновременно возрастает и высота спектральной кривой (рис. 32.3, а).

При увеличении температуры катода возрастает эмиссия электронов. Соответственно увеличивается и ток I в трубке. Высота спектральной кривой увеличивается, но спектральный состав излучения не изменяется (рис. 32.3, б).

При изменении материала анода высота спектральной кривой изменяется пропорционально атомному номеру Z (рис. 32.3, в).

32.3. Характеристическое рентгеновское излучение. Закон Мозли

При взаимодействии катодных электронов с атомами анода наряду с тормозным рентгеновским излучением возникает рентгеновское излучение, спектр которого состоит из отдельных линий. Это излучение

имеет следующее происхождение. Некоторые катодные электроны проникают в глубь атома и выбивают электроны с его внутренних оболочек. Образовавшиеся при этом вакантные места заполняются электронами с верхних оболочек, в результате чего высвечиваются кванты излучения. Это излучение содержит дискретный набор частот, определяемый материалом анода, и называется характеристическим излучением. Полный спектр рентгеновской трубки представляет собой наложение характеристического спектра на спектр тормозного излучения (рис. 32.4).

Рис. 32. 4. Спектр излучения рентгеновской трубки

Существование характеристических спектров рентгеновского излучения было обнаружено с помощью рентгеновских трубок. Позже было установлено, что такие спектры возникают при любой ионизации внутренних орбит химических элементов. Исследовав характеристические спектры различных химических элементов, Г. Мозли (1913 г.) установил следующий закон, носящий его имя.

Корень квадратный из частоты характеристического излучения есть линейная функция порядкового номера элемента:

где ν — частота спектральной линии, Z — атомный номер испускающего элемента, А, В — константы.

Закон Мозли позволяет определить атомный номер химического элемента по наблюдаемому спектру характеристического излучения. Это сыграло большую роль при размещении элементов в периодической системе.

32.4. Взаимодействие рентгеновского излучения с веществом. Закон ослабления

Существуют два основных типа взаимодействия рентгеновского излучения с веществом: рассеяние и фотоэффект. При рассеянии направление движения фотона изменяется. При фотоэффекте фотон поглощается.

1. Когерентное (упругое) рассеяние происходит тогда, когда энергия рентгеновского фотона недостаточна для внутренней ионизации атома (выбивания электрона с одной из внутренних оболочек). При этом изменяется направление движения фотона, а его энергия и длина волны не изменяются (поэтому это рассеяние и называется упругим).

2. Некогерентное (комптоновское) рассеяние происходит тогда, когда энергия фотона намного больше энергии внутренней ионизации Аи: hv >> Аи.

При этом электрон отрывается от атома и приобретает некоторую кинетическую энергию Ек. Направление движения фотона при комптоновском рассеянии изменяется, а его энергия уменьшается:

Комптоновское рассеяние связано с ионизацией атомов вещества.

3. Фотоэффект имеет место тогда, когда энергия фотона hv достаточна для ионизации атома: hv > Аи. При этом рентгеновский квант поглощается, а его энергия расходуется на ионизацию атома и сообщение кинетической энергии выбитому электрону Ек = hv — АИ.

Комптоновское рассеяние и фотоэффект сопровождаются характеристическим рентгеновским излучением, так как после выбивания внутренних электронов происходит заполнение вакантных мест электронами внешних оболочек.

Рентгенолюминесценция. В некоторых веществах электроны и кванты комптоновского рассеяния, а также электроны фотоэффекта вызывают возбуждение молекул, которое сопровождается излучательными переходами в основное состояние. При этом возникает свечение, называемое рентгенолюминесценцией. Люминесценция платиносинеродистого бария позволила Рентгену открыть Х-лучи.

Рассеяние рентгеновских лучей и фотоэффект приводят к тому, что по мере проникновения рентгеновского излучения вглубь первичный пучок излучения ослабляется (рис. 32.5). Ослабление носит экспоненциальный характер:

Величина μ зависит от поглощающего материала и спектра излучения. Для практических расчетов в качестве характеристики ослабле-

Рис. 32.5. Ослабление рентгеновского потока в направлении падающих лучей

где λ — длина волны; Z — атомный номер элемента; k — некоторая константа.

32.5. Физические основы использования

рентгеновского излучения в медицине

В медицине рентгеновское излучение применяется в диагностических и терапевтических целях.

Рентгенодиагностика — методы получения изображений внутренних органов с использованием рентгеновских лучей.

Физической основой этих методов является закон ослабления рентгеновского излучения в веществе (32.10). Однородный по сечению поток рентгеновского излучения после прохождения неоднородной ткани станет неоднородным. Эта неоднородность может быть зафиксирована на фотопленке, флуоресцирующем экране или с помощью матричного фотоприемника. Например, массовые коэффициенты ослабления костной ткани — Са3(РО4)2 — и мягких тканей — в основном Н2О — различаются в 68 раз (μm костиm воды = 68). Плотность кости также выше плотности мягких тканей. Поэтому на рентгеновском снимке получается светлое изображение кости на более темном фоне мягких тканей.

Если исследуемый орган и окружающие его ткани имеют близкие коэффициенты ослабления, то применяют специальные контрастные вещества. Так, например, при рентгеноскопии желудка обследуемый принимает кашеобразную массу сульфата бария (ВаSО4), у которого массовый коэффициент ослабления в 354 раза больше, чем у мягких тканей.

Для диагностики используют рентгеновское излучение с энергией фотонов 60-120 кэВ. В медицинской практике используют следующие методы рентгенодиагностики.

1. Рентгеноскопия. Изображение формируется на флуоресцирующем экране. Яркость изображения невелика, и его можно рассматривать только в затемненном помещении. Врач должен быть защищен от облучения.

Достоинством рентгеноскопии является то, что она проводится в реальном режиме времени. Недостаток — большая лучевая нагрузка на больного и врача (по сравнению с другими методами).

Современный вариант рентгеноскопии — рентгенотелевидение — использует усилители рентгеновского изображения. Усилитель воспринимает слабое свечение рентгеновского экрана, усиливает его и передает на экран телевизора. В результате резко уменьшилась лучевая нагрузка на врача, повысилась яркость изображения и появилась возможность видеозаписи результатов обследования.

2. Рентгенография. Изображение формируется на специальной пленке, чувствительной к рентгеновскому излучению. Снимки производятся в двух взаимно перпендикулярных проекциях (прямая и боковая). Изображение становится видимым после фотообработки. Готовый высушенный снимок рассматривают в проходящем свете.

При этом удовлетворительно видны детали, контрастности которых отличаются на 1-2 %.

В некоторых случаях перед обследованием пациенту вводится специальное контрастное вещество. Например, йодсодержащий раствор (внутривенно) при исследовании почек и мочевыводящих путей.

Достоинствами рентгенографии являются высокое разрешение, малое время облучения и практически полная безопасность для врача. К недостаткам относится статичность изображения (объект нельзя проследить в динамике).

3. Флюорография. При этом обследовании изображение, полученное на экране, фотографируется на чувствительную малоформатную пленку. Флюорография широко используется при массовом обследовании населения. Если на флюорограмме находят патологические изменения, то пациенту назначают более детальное обследование.

4. Электрорентгенография. Этот вид обследования отличается от обычной рентгенографии способом фиксации изображения. Вместо пленки используют селеновую пластину, которая электризуется под действием рентгеновских лучей. В результате возникает скрытое изображение из электрических зарядов, которое можно сделать видимым и перенести на бумагу.

5. Ангиография. Этот метод применяется при обследовании кровеносных сосудов. Через катетер в вену вводится контрастное вещество, после чего мощный рентгеновский аппарат выполняет серию снимков, следующих друг за другом через доли секунды. На рисунке 32.6 показана ангиограмма в районе сонной артерии.

6. Рентгеновская компьютерная томография. Этот вид рентгеновского обследования позволяет получить изображение плоского сечения тела толщиной несколько мм. При этом заданное сечение многократно просвечивается под разными углами с фиксацией каждого отдельного изображения в памяти компьютера. Затем

Рис. 32.6. Ангиограмма, на которой видно сужение в канале сонной артерии

Рис. 32.7. Сканирующая схема томографии (а); томограмма головы в сечении на уровне глаз (б).

осуществляется компьютерная реконструкция, результатом которой является изображение сканируемого слоя (рис. 32.7).

Компьютерная томография позволяет различать элементы с перепадом плотности между ними до 1 %. Обычная рентгенография позволяет уловить минимальную разницу по плотности между соседними участками в 10-20 %.

Рентгенотерапия — использование рентгеновского излучения для уничтожения злокачественных образований.

Биологическое действие излучения заключается в нарушении жизнедеятельности особенно быстро размножающихся клеток. Очень жесткое рентгеновское излучение (с энергией фотонов примерно 10 МэВ) используется для разрушения раковых клеток, находящихся глубоко внутри тела. Для уменьшения повреждений здоровых окружающих тканей пучок вращается вокруг пациента таким образом, чтобы под его воздействием все время оставалась только поврежденная область.

32.6. Основные понятия и формулы

Продолжение таблицы

Окончание таблицы

32.7. Задачи

1. Почему в медицинских рентгеновских трубках пучок электронов ударяет в одну точку антикатода, а не падает на него широким пучком?

Ответ: чтобы получить точечный источник рентгеновских лучей, дающий на экране резкие очертания просвечиваемых предметов.

2. Найти границу тормозного рентгеновского излучения (частоту и длину волны) для напряжений U1 = 2 кВ и U2 = 20 кВ.

4. Для защиты от рентгеновского излучения используются свинцовые экраны. Линейный показатель поглощения рентгеновского излучения в свинце равен 52 см -1 . Какова должна быть толщина экранирующего слоя свинца, чтобы он уменьшил интенсивность рентгеновского излучения в 30 раз?

5. Найти поток излучения рентгеновской трубки при U = 50 кВ, I = 1мА. Анод изготовлен из вольфрама (Z = 74). Найти КПД трубки.

6. Для рентгенодиагностики мягких тканей применяют контрастные вещества. Например, желудок и кишечник заполняют массой сульфата бария (ВаSО4). Сравнить массовые коэффициенты ослабления сульфата бария и мягких тканей (воды).

7. Что даст более густую тень на экране рентгеновской установки: алюминий (Z = 13, ρ = 2,7 г/см 3 ) или такой же слой меди (Z = 29, ρ = 8,9 г/см 3 )?

8. Во сколько раз толщина слоя алюминия больше толщины слоя меди, если слои ослабляют рентгеновское излучение одинаково?

Закон ослабление рентгеновского излучения

В результате множества процессов, происходящих при взаимодействия рентгеновского излучения с веществом поток излучения ослабляется. Это ослабление можно описать законом Бугера : Ф = Фое -μ d , где Ф — поток излучения, прошедшее через вещество, Фо — поток излучения, падающее на вещество, μ – линейный коэффициент ослабления, d – толщина слоя вещества.

Одним из показателей ослабления рентгеновского излучения с веществом является толщина слоя половинного поглощения, которое можно определить из условия, что прошедший через вещество поток излучения равен половине падающего: Ф = Фо/2. Если подставить сюда математическое выражение закон Бугера получится: Фо/2 =Фое -μ d ½ = е -μ d

ln1 – ln2 = -μd1/2 d1/2 = ln2/μ = 0,693/ μ, т.е. толщина слоя половинного поглощения величина обратная линейному коэффициенту ослабления.

Линейный коэффициент ослабления μ можно представить как сумму коэффициентов ослабления первичных действии: когерентного μкр и некогерентного μнр рассеянии и фотоэффекта μф : μ = μкр + μнр + μф.

Поток рентгеновского излучения ослабляется пропорционально числу атомов вещества, через которое этот поток проходит. Чем больше атомов в единице длины вещества, соответственно в единице объема, тем сильнее ослабляется поток рентгеновского излучения. Отсюда следует, что линейный коэффициент ослабления зависит от плотности вещества ρ μ = ρμm, где μm – массовый коэффициент ослабления, который зависит от природы вещества и от длины волны излучения..

Используя массовый коэффициент ослабления, закон Бугера можно представить в виде .

Одним из показателей ослабления рентгеновского излучения с веществом является толщина слоя половинного поглощения, которое можно определить из условия, что прошедший через вещество поток излучения равен половине падающего: Ф = Фо/2. Если подставить сюда математическое выражение закон Бугера получится: Фо/2 =Фое -μ d ½ = е -μ d

ln1 – ln2 = -μd1/2 d1/2 = ln2/μ = 0,693/ μ, т.е. толщина слоя половинного поглощения величина обратная линейному коэффициенту ослабления.

РЕНТГЕНОВСКИЕ ЛУЧИ

РЕНТГЕНОВСКИЕ ЛУЧИ – электромагнитное излучение с длинами волн 10 –4 – 10 А (10 –5 – 1 нм).

В 1895 немецкий физик Рентген, проводя опыты по прохождению тока между двумя электродами в вакууме, обнаружил, что экран, покрытый люминесцентным веществом (солью бария) светится, хотя разрядная трубка закрыта черным картонным экраном – так было открыто излучение, проникающее через непрозрачные преграды, названное Рентгеном Х-лучами. Было обнаружено, что рентгеновское излучение, невидимое для человека, поглощается в непрозрачных объектах тем сильнее, чем больше атомный номер (плотность) преграды, поэтому рентгеновские лучи легко проходят через мягкие ткани человеческого тела, но задерживаются костями скелета. Были сконструированы источники мощных рентгеновских лучей, позволяющие просвечивать металлические детали и находить в них внутренние дефекты.

Немецкий физик Лауэ предположил, что рентгеновские лучи являются таким же электромагнитным излучением, как лучи видимого света, но с меньшей длиной волны и к ним применимы все законы оптики, в том числе возможна дифракция. В оптике видимого света дифракция на элементарном уровне может быть представлена как отражение света от системы штрихов – дифракционной решетки, происходящее только под определенными углами, при этом угол отражения лучей связан с углом падения, расстоянием между штрихами дифракционной решетки и длиной волны падающего излучения. Для дифракции нужно, чтобы расстояние между штрихами было примерно равно длине волны падающего света.

Лауэ предположил, что рентгеновские лучи имеют длину волны, близкую к расстоянию между отдельными атомами в кристаллах, т.е. атомы в кристалле создают дифракционную решетку для рентгеновских лучей. Рентгеновские лучи, направленные на поверхность кристалла, отразились на фотопластинку, как предсказывалось теорией.

Любые изменения в положении атомов влияют на дифракционную картину, и, изучая дифракцию рентгеновских лучей,можно узнать расположение атомов в кристалле и изменение этого расположения при любых физических, химических и механических воздействиях на кристалл.

Сейчас рентгеноанализ используется во многих областях науки и техники, с его помощью узнали расположение атомов в существующих материалах и создали новые материалы с заданными структурой и свойствами. Последние достижения в этой области (наноматериалы, аморфные металлы, композитные материалы) создают поле деятельности для следующих научных поколений.

Возникновение и свойства рентгеновского излучения

Источником рентгеновских лучей является рентгеновская трубка, в которой есть два электрода – катод и анод. При нагреве катода происходит электронная эмиссия, электроны, вылетающие из катода, ускоряются электрическим полем и ударяются о поверхность анода. От обычной радиолампы (диода) рентгеновскую трубку отличает, в основном, более высокое ускоряющее напряжение (более 1 кВ).

Когда электрон вылетает из катода, электрическое поле заставляет его лететь по направлению к аноду, при этом скорость его непрерывно возрастает, электрон несет магнитное поле, напряженность которого растет с ростом скорости электрона. Достигая поверхности анода электрон резко тормозится, при этом возникает электромагнитный импульс с длинами волн в определенном интервале (тормозное излучение). Распределение интенсивности излучения по длинам волн зависит от материала анода рентгеновской трубки и приложенного напряжения, при этом со стороны коротких волн эта кривая начинается с некоторой пороговой минимальной длины волны, зависящей от приложенного напряжения. Совокупность лучей со всеми возможными длинами волн образует непрерывный спектр, и длина волны, соответствующая максимальной интенсивности, в 1,5 раза превышает минимальную длину волны.

При увеличении напряжения рентгеновский спектр резко меняется за счет взаимодействия атомов с высокоэнергетичными электронами и квантами первичных рентгеновских лучей. Атом содержит внутренние электронные оболочки (энергетические уровни), количество которых зависит от атомного номера (обозначаются буквами K, L, М и т.д.) Электроны и первичные рентгеновские лучи выбивают электроны из одних энергетических уровней на другие. Возникает метастабильное состояние и для перехода к стабильному состоянию необходим перескок электронов в обратном направлении. Этот скачок сопровождается выделением кванта энергии и возникновением рентгеновского излучения. В отличие от рентгеновских лучей с непрерывным спектром, у этого излучения очень узкий интервал длин волн и высокая интенсивность (характеристическое излучением) (см. рис.). Количество атомов, определяющих интенсивность характеристического излучения, очень велико, например, для рентгеновской трубки с медным анодом при напряжении 1 кВ токе 15 мА за 1 с характеристическое излучение дают 10 14 –10 15 атомов. Эта величина вычисляется как отношение общей мощности рентгеновского излучения к энергии кванта рентгеновского излучения из К-оболочки (К-серия рентгеновского характеристического излучения). Общая мощность рентгеновского излучения при этом составляет всего 0,1% от потребляемой мощности, остальная часть теряется, в основном, за счет перехода в тепло.

Вследствие высокой интенсивности и узкого интервала длин волн характеристическое рентгеновское излучение является основным типом излучения, используемым в научных исследованиях и при технологическом контроле. Одновременно с лучами К-серии генерируются лучи L и М-серий, имеющих значительно большие длины волн, но применение их ограничено. K-серия имеет две составляющие с близкими длинами волн a и b , при этом интенсивность b -составляющей в 5 раз меньше, чем a . В свою очередь a -составляющая характеризуется двумя очень близкими длинами волн, интенсивность одной из которых в 2 раза больше, чем другой. Чтобы получить излучение с одной длиной волны (монохроматическое излучение), разработаны специальные методы, использующие зависимость поглощения и дифракции рентгеновских лучей от длины волны. Увеличение атомного номера элемента связано с изменением характеристик электронных оболочек, при этом чем больше атомный номер материала анода рентгеновской трубки, тем меньше длина волны К-серии. Наиболее широко применяются трубки с анодами из элементов с атомными номерами от 24 до 42 (Cr, Fe, Co, Cu, Mo) и длинами волн от 2,29 до 0,712 А (0,229 – 0,712 нм).

Кроме рентгеновской трубки, источниками рентгеновского излучения могут быть радиоактивные изотопы, одни могут непосредственно испускать рентгеновское излучение, другие испускают электроны и a -частицы, генерирующие рентгеновское излучение при бомбардировке металлических мишеней. Интенсивность рентгеновского излучения радиоактивных источников обычно значительно меньше, чем рентгеновской трубки (за исключением радиоактивного кобальта, используемого в дефектоскопии и дающего излучение очень малой длины волны – g -излучение), они малогабаритны и не требуют электроэнергии. Синхротронное рентгеновское излучение получают в ускорителях электронов, длина волны этого излучения значительно превышает получаемую в рентгеновских трубках (мягкое рентгеновское излучение), интенсивность его на несколько порядков выше интенсивности излучения рентгеновских трубок. Есть и природные источники рентгеновского излучения. Радиоактивные примеси обнаружены во многих минералах, зарегистрировано рентгеновское излучение космических объектов, в том числе и звезд.

Взаимодействие рентгеновских лучей с кристаллами

При рентгенографическом исследовании материалов с кристаллической структурой анализируют интерференционные картины, возникающие в результате рассеяния рентгеновских лучей электронами, принадлежащими атомам кристаллической решетки. Атомы считаются неподвижными, их тепловые колебания не учитываются и все электроны одного и того же атом считаются сосредоточенными в одной точке – узле кристаллической решетки.

Для вывода основных уравнений дифракции рентгеновских лучей в кристалле рассматривается интерференция лучей, рассеянных атомами, расположенными вдоль прямой в кристаллической решетке. На эти атомы под углом, косинус которого равен a 0 , падает плоская волна монохроматического рентгеновского излучения. Законы интерференции лучей, рассеянных атомами, аналогичны существующим для дифракционной решетки, рассеивающей световое излучение в видимом диапазоне длин волн. Чтобы на большом расстоянии от атомного ряда амплитуды всех колебаний складывались, необходимо и достаточно, чтобы разность хода лучей, идущих от каждой пары соседних атомов, содержала целое число длин волн. При расстоянии между атомами а это условие имеет вид:

где a – косинус угла между атомным рядом и отклоненным лучом, h – целое число. Во всех направлениях, не удовлетворяющих этому уравнению, лучи не распространяются. Таким образом, рассеянные лучи образуют систему коаксиальных конусов, общей осью которых является атомный ряд. Следы конусов на плоскости, параллельной атомному ряду, – гиперболы, а на плоскости, перпендикулярной ряду, – круги.

При падении лучей под постоянным углом полихроматическое (белое) излучение разлагается в спектр лучей, отклоненных под фиксированными углами. Таким образом, атомный ряд является спектрографом для рентгеновского излучения.

Обобщение на двумерную (плоскую) атомную решетку, а затем на трехмерную объемную (пространственную) кристаллическую решетку дает еще два аналогичных уравнения, в которые входят углы падения и отражения рентгеновского излучения и расстояния между атомами по трем направлениям. Эти уравнения называются уравнениями Лауэ и лежат в основе рентгеноструктурного анализа.

Амплитуды лучей, отраженных от параллельных атомных плоскостей складываются и т.к. количество атомов очень велико, отраженное излучение можно зафиксировать экспериментально. Условие отражения описывается уравнением Вульфа – Брэгга 2d sin q = n l , где d – расстояние между соседними атомными плоскостями, q – угол скольжения между направлением падающего луча и этими плоскостями в кристалле, l – длина волны рентгеновского излучения, n – целое число, названное порядком отражения. Угол q является углом падения по отношению именно к атомным плоскостям, которые не обязательно совпадают по направлению с поверхностью исследуемого образца.

Разработано несколько методов рентгеноструктурного анализа, использующих как излучение со сплошным спектром, так и монохроматическое излучение. Исследуемый объект при этом может быть неподвижным или вращающимся, может состоять из одного кристалла (монокристалл) или многих (поликристалл), дифрагированное излучение может регистрироваться с помощью плоской или цилиндрической рентгеновской пленки или перемещающегося по окружности детектора рентгеновского излучения, однако во всех случаях при проведении эксперимента и интерпретации результатов используется уравнение Вульфа – Брэгга.

Рентгеноанализ в науке и технике

С открытием дифракции рентгеновских лучей в распоряжении исследователей оказался метод, позволяющий без микроскопа изучить расположение отдельных атомов и изменения этого расположения при внешних воздействиях.

Основное применение рентгеновских лучей в фундаментальной науке – структурный анализ, т.е. установление пространственного расположения отдельных атомов в кристалле. Для этого выращивают монокристаллы и проводят рентгеноанализ, изучая как расположения, так и интенсивности рефлексов. Сейчас определены структуры не только металлов, но и сложных органических веществ, в которых элементарные ячейки содержат тысячи атомов.

В минералогии методом ретгеноанализа определены структуры тысяч минералов и созданы экспресс-методы анализа минерального сырья.

У металлов сравнительно простая кристаллическая структура и рентгеновский метод позволяет исследовать ее изменения при различных технологических обработках и создавать физические основы новых технологий.

По расположению линий на рентгенограммах определяют фазовый состав сплавов, по их ширине – число, величину и форму кристаллов, по распределению интенсивности в дифракционном конусе – ориентировку кристаллов (текстуру).

С помощью этих методик изучают процессы при пластической деформации, включающие в себя дробление кристаллов, возникновение внутренних напряжений и несовершенств кристаллической структуры (дислокаций). При нагреве деформированных материалов изучают снятие напряжений и рост кристаллов (рекристаллизация).

При рентгеноанализе сплавов определяют состав и концентрацию твердых растворов. При возникновении твердого раствора меняются межатомные расстояния и, следовательно, расстояния между атомными плоскостями. Эти изменения невелики, поэтому разработаны специальные прецизионные методы измерения периодов кристаллической решетки с точностью на два порядка превышающей точность измерения при обычных рентгеновских методах исследования. Сочетание прецизионных измерений периодов кристаллической решетки и фазового анализа позволяют построить границы фазовых областей на диаграмме состояния. Рентгеновским методом можно также обнаружить промежуточные состояния между твердыми растворами и химическими соединениями – упорядоченные твердые растворы, в которых атомы примеси расположены не хаотически, как в твердых растворах, и в то же время не с трехмерной упорядоченностью, как в химических соединениях. На рентгенограммах упорядоченных твердых растворов есть дополнительные линии, расшифровка рентгенограмм показывает, что атомы примеси занимают определенные места в кристаллической решетке, например, в вершинах куба.

При закалке сплава, не испытывающего фазовых превращений, может возникать пересыщенный твердый раствор и при дальнейшем нагреве или даже выдержке при комнатной температуре твердый раствор распадается с выделением частиц химического соединения. Это эффект старениея и проявляется он на рентгенограммах как изменение положения и ширины линий. Исследование старения особенно важно для сплавов цветных металлов, например, старение превращает мягкий закаленный алюминиевый сплав в прочный конструкционный материал дуралюмин.

Наибольшее технологическое значение имеют рентгеновские исследования термической обработки стали. При закалке (быстром охлаждении) стали происходит бездиффузионный фазовый переход аустенит – мартенсит, что приводит к изменению структуры от кубической к тетрагональной, т.е. элементарная ячейка приобретает форму прямоугольной призмы. На рентгенограммах это проявляется как расширение линий и разделение некоторых линий на две. Причины этого эффекта – не только изменение кристаллической структуры, но и возникновение больших внутренних напряжений из-за термодинамической неравновесности мартенситной структуры и резкого охлаждения. При отпуске (нагреве закаленной стали) линии на рентгенограммах сужаются, это связано с возвращением к равновесной структуре.

В последние годы большое значение приобрели рентгеновские исследования обработки материалов концентрированными потоками энергии (лучами лазера, ударными волнами, нейтронами, электронными импульсами), они потребовали новых методик и дали новые рентгеновские эффекты. Например, при действии лучей лазера на металлы нагрев и охлаждение происходят настолько быстро, что в металле при охлаждении кристаллы успевают вырасти только до размеров в несколько элементарных ячеек (нанокристаллы) или вообще не успевают возникнуть. Такой металл после охлаждения выглядит как обычный, но не дает четких линий на рентгенограмме, а отраженные рентгеновские лучи распределены по всему интервалу углов скольжения.

После нейтронного облучения на рентгенограммах возникают дополнительные пятна (диффузные максимумы). Радиоактивный распад также вызывает специфические рентгеновские эффекты, связанные с изменением структуры, а также с тем, что исследуемый образец сам становится источником рентгеновского излучения.

Это интересно:

  • Медосмотр работников приказ Приказ о прохождении периодического медицинского осмотра Цель документа Периодический медосмотр в 2018 г. (приказ Минздрава № 302н) ориентировал на выявление у сотрудников заболеваний, которые могут быть опасны для них и окружающих их людей. Также он позволяет определить пригодность […]
  • Входит ли в общий стаж обучение в институте Учеба в институте и трудовой стаж Еще с давних времен каждый из людей серьезно задумывался о своем трудовом стаже, поскольку именно от него зависело, какая именно пенсия будет насчитана по достижении человеком соответствующего возраста. Причем в годы существования СССР имелся такой […]
  • Важные правила спорта Как начать заниматься фитнесом В последнее время спорт все же становится частью культуры населения и начинает, наконец, оправдывать почти позабытое слово «физкультура», отражая его суть. Многие из нас ведут преимущественно сидячий образ жизни, что не может губительно не сказаться не […]
  • Судебное поручение по гражданскому делу Ходатайство о судебном поручении В условиях большой территории страны ходатайство о судебном поручении является одним из востребованных способов содействия в предоставлении доказательств. Иногда свидетели, эксперты, письменные и иные доказательства по гражданскому делу находятся в другом […]
  • Подоходный налог законопроект Подоходный налог с физических лиц 2018 в России: изменения и ставки НДФЛ Одним из самых популярных налогов в РФ является подоходный налог для физичесикх лиц, который затрагивает абсолютно всех работающих граждан. Не удивительно, что к нему такое пристальное внимание, ведь от того, каков […]
  • Срок подачи ответа на претензию Срок ответа на претензию Сроки ответа на претензию по закону о защите потребительских прав Практика урегулирования споров доказывает, что судебный процесс не сулит моментального решения. Обычно, судебные тяжбы стирают шансы на нахождение консенсуса, финального примирения. Часто, споры […]
  • Особенности гражданско-правовой ответственности несовершеннолетних О некоторых особенностях гражданско-правовой ответственности за вред, причиненный несовершеннолетними гражданами. Статьи по предмету Гражданское право О НЕКОТОРЫХ ОСОБЕННОСТЯХ ГРАЖДАНСКО-ПРАВОВОЙ ОТВЕТСТВЕННОСТИ ЗА ВРЕД, ПРИЧИНЕННЫЙ НЕСОВЕРШЕННОЛЕТНИМИ ГРАЖДАНАМИ Ю.Б. САФОНОВА В […]
  • Правила как найти расстояние 15. Формулы. Формула скорости, пути. Правила Скорость это физическая величина, показывающая, какое расстояние пройдет объект за единицу времени. Скорость 90 км/ч. обозначает, что объект за один час преодолеет 90 км. Давайте напишем формулу скорости. Формула это математическая запись, в […]

Author: admin